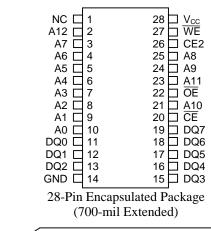
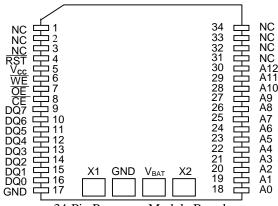

DS1743/DS1743P Y2KC Nonvolatile Timekeeping RAM

www.dalsemi.com


FEATURES


- Integrated NV SRAM, real time clock, crystal, powerfail control circuit and lithium energy source
- Clock registers are accessed identical to the static RAM. These registers are resident in the eight top RAM locations.
- Century byte register
- Totally nonvolatile with over 10 years of operation in
- the absence of power
- BCD coded century, year, month, date, day, hours,
- minutes, and seconds with automatic leap year compensation valid up to the year 2100
- Battery voltage level indicator flag
- Power-fail write protection allows for ±10% V_{CC} power supply tolerance
- Lithium energy source is electrically disconnected to retain freshness until power is applied for the first time
- DIP Module only
 - Standard JEDEC bytewide 8k x 8 static RAM pinout
- PowerCap[®] Module Board only
 - Surface mountable package for direct connection to PowerCap containing battery and crystal
 - Replaceable battery (PowerCap)
 - Power-On Reset Output
 - Pin for pin compatible with other densities of DS174XP Timekeeping RAM

ORDERING INFORMATION

PIN ASSIGNMENT

34-Pin Powercap Module Board (Uses DS9034PCX Powercap)

PIN DESCRIPTION

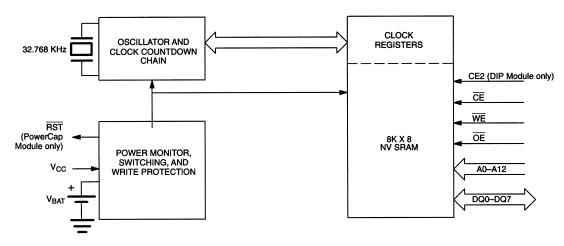
A0-A12	- Address Input
CE	- Chip Enable
CE2	- Chip Enable 2 (DIP
	Module only)
OE	- Output Enable
$\overline{ ext{WE}}$	- Write Enable
V_{CC}	- Power Supply Input
GND	- Ground
DQ0-DQ7	- Data Input/Output
NC	- No Connection
RST	- Power-On Reset Output
	(PowerCap Module board only)
X1, X2	- Crystal Connection
V_{BAT}	- Battery Connection

1 of 17 022301

DESCRIPTION

The DS1743 is a full function, year 2000-compliant (Y2KC), real-time clock/calendar (RTC) and 8k x 8 non-volatile static RAM. User access to all registers within the DS1743 is accomplished with a bytewide interface as shown in Figure 1. The Real Time Clock (RTC) information and control bits reside in the eight uppermost RAM locations. The RTC registers contain century, year, month, date, day, hours, minutes, and seconds data in 24-hour BCD format. Corrections for the day of the month and leap year are made automatically. The RTC clock registers are double buffered to avoid access of incorrect data that can occur during clock update cycles. The double buffered system also prevents time loss as the timekeeping countdown continues unabated by access to time register data. The DS1743 also contains its own power-fail circuitry, which deselects the device when the $V_{\rm CC}$ supply is in an out of tolerance condition. This feature prevents loss of data from unpredictable system operation brought on by low $V_{\rm CC}$ as errant access and update cycles are avoided.

PACKAGES


The DS1743 is available in two packages (28-pin DIP and 34-pin PowerCap module). The 28-pin DIP style module integrates the crystal, lithium energy source, and silicon all in one package. The 34-pin PowerCap Module Board is designed with contacts for connection to a separate PowerCap (DS9034PCX) that contains the crystal and battery. This design allows the PowerCap to be mounted on top of the DS1743P after the completion of the surface mount process. Mounting the PowerCap after the surface mount process prevents damage to the crystal and battery due to the high temperatures required for solder reflow. The PowerCap is keyed to prevent reverse insertion. The PowerCap Module Board and PowerCap are ordered separately and shipped in separate containers. The part number for the PowerCap is DS9034PCX.

CLOCK OPERATIONS-READING THE CLOCK

While the double buffered register structure reduces the chance of reading incorrect data, internal updates to the DS1743 clock registers should be halted before clock data is read to prevent reading of data in transition. However, halting the internal clock register updating process does not affect clock accuracy. Updating is halted when a 1 is written into the read bit, bit 6 of the century register, see Table 2. As long as a 1 remains in that position, updating is halted. After a halt is issued, the registers reflect the count, that is day, date, and time that was current at the moment the halt command was issued. However, the internal clock registers of the double-buffered system continue to update so that the clock accuracy is not affected by the access of data. All of the DS1743 registers are updated simultaneously after the internal clock register updating process has been re-enabled. Updating is within a second after the read bit is written to 0.

The READ bit must be a zero for a minimum of 500 µs to ensure the external registers will be updated.

DS1743 BLOCK DIAGRAM Figure 1

DS1743 TRUTH TABLE Table 1

V _{CC}	CE	CE2	ŌE	WE	MODE	DQ	POWER
	V_{IH}	X	X	X	DESELECT	HIGH-Z	STANDBY
37 - 37	X	V_{IL}	X	X	DESELECT	HIGH-Z	STANDBY
$V_{CC}>V_{PF}$	V_{IL}	V_{IH}	X	V_{IL}	WRITE	DATA IN	ACTIVE
	V_{IL}	V_{IH}	V_{IL}	V_{IH}	READ	DATA OUT	ACTIVE
	V_{IL}	V_{IH}	V_{IH}	V_{IH}	READ	HIGH-Z	ACTIVE
$V_{SO} < V_{CC} < V_{PF}$	X	X	X	X	DESELECT	HIGH-Z	CMOS STANDBY
$V_{CC} < V_{SO} < V_{PF}$	X	X	X	X	DESELECT	HIGH-Z	DATA RETENTION
							MODE

SETTING THE CLOCK

As shown in Table 2, bit 7 of the century register is the write bit. Setting the write bit to a 1, like the read bit, halts updates to the DS1743 registers. The user can then load them with the correct day, date and time data in 24-hour BCD format. Resetting the write bit to a 0 then transfers those values to the actual clock counters and allows normal operation to resume.

STOPPING AND STARTING THE CLOCK OSCILLATOR

The clock oscillator may be stopped at any time. To increase the shelf life, the oscillator can be turned off to minimize current drain from the battery. The \overline{OSC} bit is the MSB (bit 7) of the seconds registers, see Table 2. Setting it to a 1 stops the oscillator.

FREQUENCY TEST BIT

As shown in Table 2, bit 6 of the day byte is the frequency test bit. When the frequency test bit is set to logic 1 and the oscillator is running, the LSB of the seconds register will toggle at 512 Hz. When the seconds register is being read, the DQ0 line will toggle at the 512 Hz frequency as long as conditions for access remain valid (i.e., $\overline{\text{CE}}$ low, $\overline{\text{OE}}$ low, $\overline{\text{WE}}$ high, and address for seconds register remain valid and stable).

CLOCK ACCURACY (DIP MODULE)

The DS1743 is guaranteed to keep time accuracy to within ± 1 minute per month at 25°C. The RTC is calibrated at the factory by Dallas Semiconductor using nonvolatile tuning elements, and does not require additional For this reason, methods of field clock calibration are not available and not necessary. Clock accuracy is also effected by the electrical environment and caution should be taken to place the RTC in the lowest level EMI section of the PCB layout. For additional information please see application note 58.

CLOCK ACCURACY (POWERCAP MODULE)

The DS1743 and DS9034PCX are each individually tested for accuracy. Once mounted together, the module will typically keep time accuracy to within ± 1.53 minutes per month (35 ppm) at 25°C. Clock accuracy is also effected by the electrical environment and caution should be taken to place the RTC in the lowest level EMI section of the PCB layout. For additional information please see application note 58.

DS1743 REGISTER MAP Table 2

				DATA	\					
ADDRESS	B ₇	B ₆	B ₅	B ₄	B ₃	\mathbf{B}_2	B ₁	\mathbf{B}_0	FUNCTION/RA	ANGE
1FFF		10	Year		YEAR			•	YEAR	00-99
1FFE	X	X	X	10 Mo	MONTH				MONTH	01-12
1FFD	X	X	10	Date	DATE				DATE	01-31
1FFC	BF	FT	X	X	X		DAY		DAY	01-07
1FFB	X	X	10 H	IOUR		HOU	R		HOUR	00-23
1FFA	X	1	0 MINUT	ES		MINUT	ΓES		MINUTES	00-59
1FF9	OSC	10	0 SECON	DS	SECONDS		SECONDS		SECONDS	00-59
1FF8	W	R	10 CE	NTURY		CENTU	IRY		CONTROL	00-39

 $\overline{OSC} = STOP BIT$

R = READ BIT

FT = FREQUENCY TEST

W = WRITE BIT

X = SEE NOTE BELOW

BF = BATTERY FLAG

NOTE:

All indicated "X" bits are not dedicated to any particular function and can be used as normal RAM bits.

RETRIEVING DATA FROM RAM OR CLOCK

The DS1743 is in the read mode whenever \overline{OE} (output enable) is low, \overline{WE} (write enable) is high, and \overline{CE} (chip enable) is low. The device architecture allows ripple-through access to any of the address locations in the NV SRAM. Valid data will be available at the DQ pins within t_{AA} after the last address input is stable, providing that the \overline{CE} , and \overline{OE} access times and states are satisfied. If \overline{CE} , or \overline{OE} access times and states are not met, valid data will be available at the latter of chip enable access (t_{CEA}) or at output enable access time (t_{CEA}). The state of the data input/output pins (DQ) is controlled by \overline{CE} , and \overline{OE} . If the outputs are activated before t_{AA} , the data lines are driven to an intermediate state until t_{AA} . If the address inputs are changed while \overline{CE} , and \overline{OE} remain valid, output data will remain valid for output data hold time (t_{OH}) but will then go indeterminate until the next address access.

WRITING DATA TO RAM OR CLOCK

The DS1743 is in the write mode whenever \overline{WE} , and \overline{CE} are in their active state. The start of a write is referenced to the latter occurring transition of \overline{WE} , on \overline{CE} . The addresses must be held valid throughout the cycle. \overline{CE} or \overline{WE} must return inactive for a minimum of t_{WR} prior to the initiation of another read or write cycle. Data in must be valid t_{DS} prior to the end of write and remain valid for t_{DH} afterward. In a typical application, the \overline{OE} signal will be high during a write cycle. However, \overline{OE} can be active provided that care is taken with the data bus to avoid bus contention. If \overline{OE} is low prior to \overline{WE} transitioning low the data bus can become active with read data defined by the address inputs. A low transition on \overline{WE} will then disable the outputs t_{WEZ} after \overline{WE} goes active.

DATA RETENTION MODE

The 5-volt device is fully accessible and data can be written or read only when $V_{\rm CC}$ is greater than $V_{\rm PF}$. However, when $V_{\rm CC}$ is below the power fail point, $V_{\rm PF}$. (point at which write protection occurs) the internal clock registers and SRAM are blocked from any access. At this time(PowerCap only)the power fail reset output signal ($\overline{\rm RST}$) is driven active and will remain active until $V_{\rm CC}$ returns to nominal levels. When $V_{\rm CC}$ falls below the battery switch point $V_{\rm SO}$ (battery supply level), device power is switched from the $V_{\rm CC}$ in to the backup battery. RTC operation and SRAM data are maintained from the battery until $V_{\rm CC}$ is greater than $V_{\rm PF}$. When $V_{\rm CC}$ falls below the power fail point, $V_{\rm PF}$, access to the device is inhibited. At this time the power fail reset output signal ($\overline{\rm RST}$) is driven active and will remain active until $V_{\rm CC}$ returns to nominal levels. If $V_{\rm PF}$ is less than $V_{\rm SO}$, the device power is switched from $V_{\rm CC}$ to the backup supply ($V_{\rm BAT}$) when $V_{\rm CC}$ drops below $V_{\rm PF}$. If $V_{\rm PF}$ is greater than $V_{\rm SO}$, the device power is switched from $V_{\rm CC}$ to the backup supply ($V_{\rm BAT}$) when $V_{\rm CC}$ drops below $V_{\rm PF}$. If $V_{\rm PF}$ is greater than $V_{\rm SO}$, the device power is switched from the battery until $V_{\rm CC}$ is returned to nominal levels. The $\overline{\rm RST}$ (PowerCap only) signal is an open drain output and requires a pull up. Except for the $\overline{\rm RST}$, all control, data, and address signals must be powered down when $V_{\rm CC}$ is powered down.

BATTERY LONGEVITY

The DS1743 has a lithium power source that is designed to provide energy for clock activity and clock and RAM data retention when the V_{CC} supply is not present. The capability of this internal power supply is sufficient to power the DS1743 continuously for the life of the equipment in which it is installed. For specification purposes, the life expectancy is 10 years at 25°C with the internal clock oscillator running in the absence of V_{CC} power. Each DS1743 is shipped from Dallas Semiconductor with its lithium energy source disconnected, guaranteeing full energy capacity. When V_{CC} is first applied at a level greater than V_{PF} , the lithium energy source is enabled for battery backup operation. Actual life expectancy of the DS1743 will be much longer than 10 years since no lithium battery energy is consumed when V_{CC} is present.

BATTERY MONITOR

The DS1743 constantly monitors the battery voltage of the internal battery. The Battery Flag bit (bit 7) of the day register is used to indicate the voltage level range of the battery. This bit is not writable and should always be a 1 when read. If a 0 is ever present, an exhausted lithium energy source is indicated and both the contents of the RTC and RAM are questionable.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Ground -0.3V to +6.0V Operating Temperature $0^{\circ}C$ to $70^{\circ}C$ Storage Temperature $-40^{\circ}C$ to $+85^{\circ}C$

Soldering Temperature See J-STD-020A Specification (See Note 8)

OPERATING RANGE

Range	Temperature	$ m V_{CC}$
Commercial	0°C to +70°C	$3.3V \pm 10\%$ or $5V \pm 10\%$

RECOMMENDED DC OPERATING CONDITIONS

(Over the Operating Range)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Logic 1 Voltage All Inputs						
$V_{CC} = 5V \pm 10\%$	$V_{ m IH}$	2.2		V_{CC} +0.3V	V	1
$V_{CC} = 3.3V \pm 10\%$	V_{IH}	2.0		V_{CC} +0.3V	V	1
Logic 0 Voltage All Inputs						
$V_{CC} = 5V \pm 10\%$	$V_{ m IL}$	-0.3		0.8	V	1
$V_{CC} = 3.3V \pm 10\%$	V_{IL}	-0.3		0.6	V	1

DC ELECTRICAL CHARACTERISTICS

(Over the Operating Range; $V_{CC} = 5.0V \pm 10\%$)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Active Supply Current	I_{CC}		15	50	mA	2, 3
TTL Standby Current	I_{CC1}		1	3	mA	2, 3
$(\overline{CE} = V_{IH}, CE2 = V_{IL})$						
CMOS Standby Current	I_{CC2}		1	3	mA	2, 3
$(\overline{CE} \ge V_{CC} - 0.2V, CE2 =$						
GND + 0.2V)						
Input Leakage Current	$ m I_{IL}$	-1		+1	μΑ	
(any input)						
Output Leakage Current	I_{OL}	-1		+1	μΑ	
(any output)						
Output Logic 1 Voltage	V_{OH}	2.4				1
$(I_{OUT} = -1.0 \text{ mA})$						
Output Logic 0 Voltage	V_{OL1}			0.4		1
$(I_{OUT} = 2.1 \text{ mA})$						
Write Protection Voltage	V_{PF}	4.25		4.50	V	1
Battery Switch-over Voltage	V_{SO}		V_{BAT}			1, 4

^{*} This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

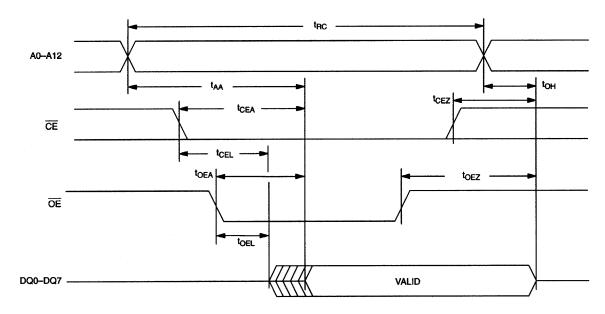
DC ELECTRICAL CHARACTERISTICS

(Over the Operating Range; $V_{CC} = 3.3V \pm 10\%$)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Active Supply Current	I_{CC}		10	30	mA	2, 3
TTL Standby Current ($\overline{CE} = V_{IH}$)	I_{CC1}		0.7	2	mA	2, 3
CMOS Standby Current	I_{CC2}		0.7	2	mA	2, 3
$(\overline{CE} \ge V_{CC} - 0.2V, CE2 = GND + 0.2V)$						
Input Leakage Current (any input)	I_{IL}	-1		+1	μΑ	
Output Leakage Current (any output)	I_{OL}	-1		+1	μА	
Output Logic 1 Voltage (I _{OUT} = -1.0 mA)	V_{OH}	2.4				1
Output Logic 0 Voltage						
$(I_{OUT} = 2.1 \text{ mA})$	V_{OL1}			0.4		1
Write Protection Voltage	V_{PF}	2.80		2.97	V	1
Battery Switch-over Voltage	V_{SO}		V_{BAT} or V_{PF}		V	1, 4

READ CYCLE, AC CHARACTERISTICS

(Over the Operating Range; $V_{CC} = 5.0V \pm 10\%$)


		70 ns access		100 ns access			
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS	NOTES
Read Cycle Time	t_{RC}	70		100		ns	5
Address Access Time	t_{AA}		70		100	ns	5
CE to CE2 to DQ Low-Z	t_{CEL}	5		5		ns	5
CE Access Time	t_{CEA}		70		100	ns	5
CE2 Access Time	t_{CE2A}		80		105	ns	5
CE and CE2 Data Off time	t_{CEZ}		25		35	ns	5
OE to DQ Low-Z	t _{OEL}	5		5		ns	5
OE Access Time	t _{OEA}		35		55	ns	5
OE Data Off Time	t _{OEZ}		25		35	ns	5
Output Hold from Address	t _{OH}	5		5		ns	5

READ CYCLE, AC CHARACTERISTICS

(Over the Operating Range; $V_{CC} = 3.3V \pm 10\%$)

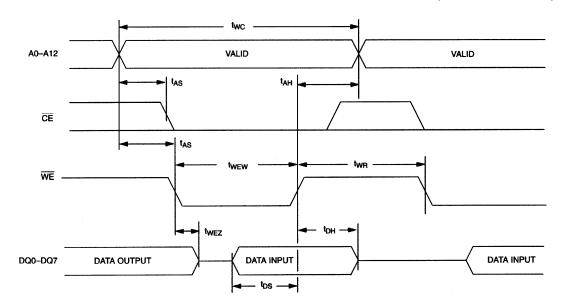
	,	120 ns	120 ns access		150 ns access		
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS	NOTES
Read Cycle Time	t_{RC}	120		150		ns	5
Address Access Time	t_{AA}		120		150	ns	5
CE and CE2 Low to DQ Low-Z	t_{CEL}	5		5		ns	5
CE and CE2 Access Time	t_{CEA}		120		150	ns	5
CE and CE2 Data Off time	t_{CEZ}		40		50	ns	5
OE Low to DQ Low-Z	t_{OEL}	5		5		ns	5
OE Access Time	t _{OEA}		100		130	ns	5
OE Data Off Time	t _{OEZ}		35		35	ns	5
Output Hold from Address	t_{OH}	5		5		ns	5

READ CYCLE TIMING DIAGRAM

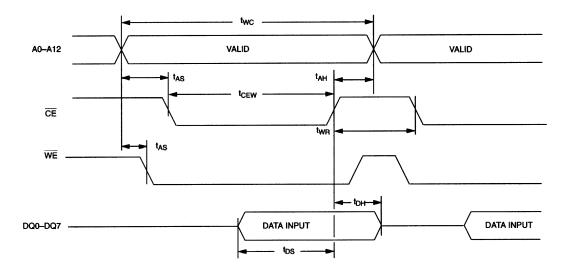
SEE NOTES

WRITE CYCLE, AC CHARACTERISTICS

(Over the Operating Range; $V_{CC} = 5.0V \pm 10\%$)


		70 ns	70 ns access		access		
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS	NOTES
Write Cycle Time	t_{WC}	70		100		ns	5
Address Setup Time	t_{AS}	0		0		ns	5
WE Pulse Width	t_{WEW}	50		70		ns	5
CE Pulse Width	t_{CEW}	60		75		ns	5
CE2 Pulse Width	$t_{\rm CE2W}$	65	85			ns	5
Data Setup Time	t_{DS}	30		40		ns	5
Data Hold time	t _{DH}	0		0		ns	5
Address Hold Time	t _{AH}	5		5		ns	5
WE Data Off Time	$t_{ m WEZ}$		25		35	ns	5
Write Recovery Time	t_{WR}	5		5		ns	5

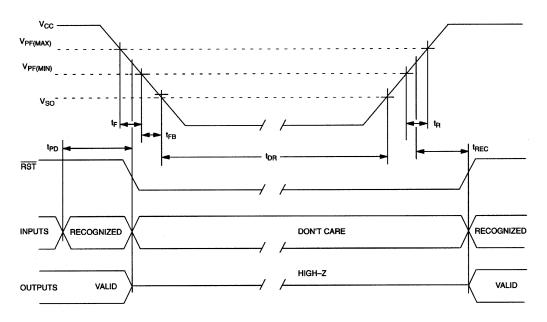
WRITE CYCLE, AC CHARACTERISTICS


(Over the Operating Range; $V_{CC} = 3.3V \pm 10\%$)

					0 /	00			
		120 ns	access	150 ns	access				
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS	NOTES		
Write Cycle Time	$t_{ m WC}$	120		150		ns	5		
Address Setup Time	t _{AS}	0		0		ns	5		
WE Pulse Width	$t_{ m WEW}$	100		130		ns	5		
CE and CE2 Pulse Width	t_{CEW}	110		140		ns	5		
Data Setup Time	$t_{ m DS}$	80		90		ns	5		
Data Hold Time	t _{DH}	0		0		ns	5		
Address Hold Time	t _{AH}	0		0		ns	5		
WE Data Off Time	$t_{ m WEZ}$		40		50	ns	5		
Write Recovery Time	t_{WR}	10		10		ns	5		

WRITE CYCLE TIMING, WRITE ENABLE CONTROLLED (SEE NOTE 5)

WRITE CYCLE TIMING, CE, CE2 CONTROLLED (SEE NOTE 5)

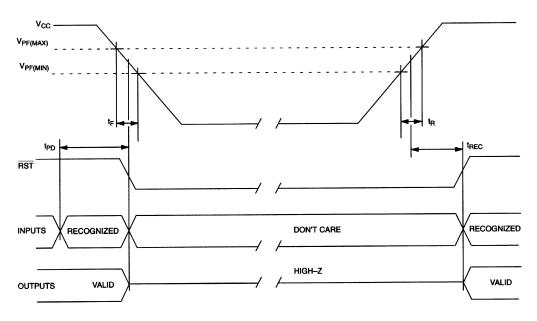


POWER-UP/DOWN CHARACTERISTICS

(Over the Operating Range; $V_{CC} = 5.0V \pm 10\%$)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
$\overline{\text{CE}}$ or $\overline{\text{WE}}$ at V_{IH} , CE2 at V_{IL} , Before Power-Down	t _{PD}	0			μs	
V_{CC} Fall Time: $V_{PF}(MAX)$ to $V_{PF}(Min)$	t _F	300			μs	
V_{CC} Fall Time: $V_{PF}(MIN)$ to V_{SO}	t_{FB}	10			μs	
V_{CC} Rise Time: $V_{PF}(MIN)$ to $V_{PF}(MAX)$	t _R	0			μs	
Power-up Recover Time	t_{REC}			35	ms	
Expected Data Retention Time (Oscillator On)	t _{DR}	10			years	6, 7

POWER-UP/POWER-DOWN TIMING 5-VOLT DEVICE



POWER-UP/DOWN CHARACTERISTICS

(Over the Operating Range; $V_{CC} = 3.3V \pm 10\%$)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
CE or WE at V _{IH} , Before Power-Down	t _{PD}	0			μs	
V_{CC} Fall Time: $V_{PF(MAX)}$ to $V_{PF(Min)}$	t _F	300			μs	
V_{CC} Rise Time: $V_{PF(MIN)}$ to $V_{PF(MAX)}$	t _R	0			μs	
V _{PF} to RST High	t_{REC}			35	ms	
Expected Data Retention Time (Oscillator On)	t _{DR}	10			years	6, 7

POWER-UP/DOWN WAVEFORM TIMING 3.3-VOLT DEVICE

CAPACITANCE $(t_A = 25^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Capacitance on all input pins	C_{IN}			7	pF	
Capacitance on all output pins	Co			10	pF	

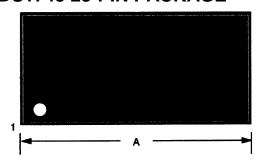
AC TEST CONDITIONS

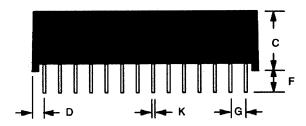
Output Load: 100 pF + 1TTL Gate

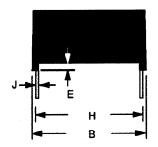
Input Pulse Levels: 0.0 to 3.0V Timing Measurement Reference Levels:

Input: 1.5V Output: 1.5V

Input Pulse Rise and Fall Times: 5 ns

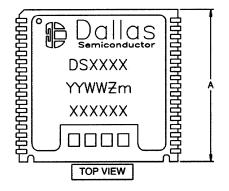

NOTES:

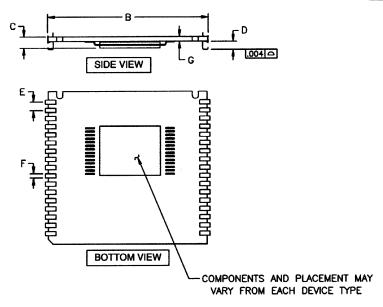

- 1. Voltages are referenced to ground.
- 2. Typical values are at 25°C and nominal supplies.
- 3. Outputs are open.
- 4. Battery switchover occurs at the lower of either the battery terminal voltage or V_{PF}.
- 5. The CE2 control signal functions exactly the same as the $\overline{\text{CE}}$ signal except that the logic levels for active and inactive levels are opposite.
- 6. Data retention time is at 25°C.
- 7. Each DS1743 has a built-in switch that disconnects the lithium source until V_{CC} is first applied by the user. The expected t $_{DR}$ is defined for DIP modules as a cumulative time in the absence of V_{CC} starting from the time power is first applied by the user.
- 8. Real-Time Clock Modules (DIP) can be successfully processed through conventional wave-soldering techniques as long as temperatures as long as temperature exposure to the lithium energy source contained within does not exceed +85°C. Post-solder cleaning with water washing techniques is acceptable, provided that ultrasonic vibration is not used.


In addition, for the PowerCap:

- a. Dallas Semiconductor recommends that PowerCap Module bases experience one pass through solder reflow oriented with the label side up ("live bug").
- b. Hand Soldering and touch-up: Do not touch or apply the soldering iron to leads for more than 3 (three) seconds. To solder, apply flux to the pad, heat the lead frame pad and apply solder. To remove the part, apply flux, heat the lead frame pad until the solder reflow and use a solder wick to remove solder.

DS1743 28-PIN PACKAGE

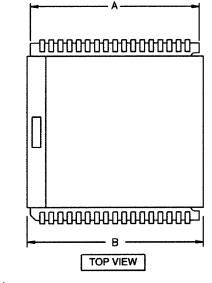




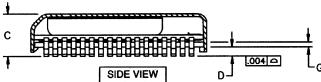
PKG	28-PIN			
DIM	MIN	MAX		
A IN.	1.470 37.34	1.490 37.85		
B IN.	0.675	0.740		
MM	17.75	18.80		
C IN.	0.315 8.51	0.335 9.02		
D IN.	0.075 1.91	0.105 2.67		
E IN.	0.015	0.030		
MM	0.38	0.76		
F IN.	0.140	0.180		
MM	3.56	4.57		
G IN.	0.090	0.110		
MM	2.29	2.79		
H IN.	0.590	0.630		
MM	14.99	16.00		
J IN.	0.010	0.018		
MM	0.25	0.45		
K IN.	0.015	0.025		
MM	0.43	0.58		

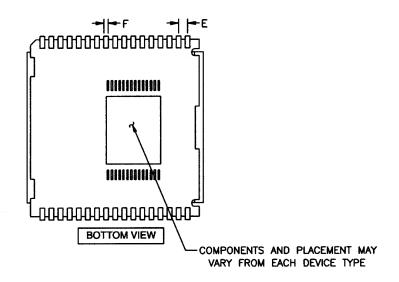
DS1743P

PKG	INCHES					
DIM	MIN	MIN NOM MAX				
Α	0.920	0.925	0.930			
В	0.980	0.985	0.990			
С	_	-	0.080			
D	0.052	0.055	0.058			
E	0.048	0.050	0.052			
F	0.015	0.020	0.025			
G	0.025	0.027	0.030			

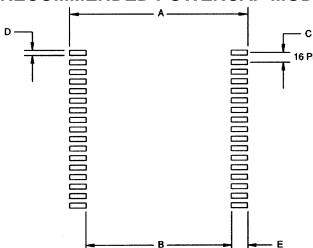

NOTE:

Dallas Semiconductor recommends that PowerCap Module bases experience one pass through solder reflow oriented with the label side up ("live-bug").


Hand Soldering and touch-up: Do not touch or apply the soldering iron to leads for more than 3 (three) seconds.


To solder, apply flux to the pad, heat the lead frame pad and apply solder. To remove the part, apply flux, heat the lead frame pad until the solder reflows and use a solder wick to remove solder.

DS1743P WITH DS9034PCX ATTACHED



PKG	INCHES					
DIM	MIN	MIN NOM MAX				
A	0.920	0.925	0.930			
В	0.955	0.960	0.965			
С	0.240	0.245	0.250			
D	0.052	0.055	0.058			
E	0.048	0.050	0.052			
F	0.015	0.020	0.025			
G	0.020	0.025	0.030			

RECOMMENDED POWERCAP MODULE LAND PATTERN

		INCHES	
PKG DIM	MIN	NOM	MAX
A	_	1.050	-
В	_	0.826	_
С	-	0.050	_
D	-	0.030	-
E	_	0.112	-

О компании

ООО "ТрейдЭлектроникс" - это оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов. Реализуемая нашей компанией продукция насчитывает более полумиллиона наименований.

Благодаря этому наша компания предлагает к поставке практически не ограниченный ассортимент компонентов как оптовыми, мелкооптовыми партиями, так и в розницу.

Наличие собственной эффективной системы логистики обеспечивает надежную поставку продукции по конкурентным ценам в точно указанные сроки.

Срок поставки со стоков в Европе и Америке – от 3 до 14 дней.

Срок поставки из Азии - от 10 дней.

Благодаря развитой сети поставщиков, помогаем в поиске и приобретении экзотичных или снятых с производства компонентов.

Предоставляем спец цены на элементы для создания инженерных сэмплов.

Упорный труд, качественный результат дают нам право быть уверенными в себе и надежными для наших клиентов.

Наша компания это:

- Гарантия качества поставляемой продукции
- Широкий ассортимент
- Минимальные сроки поставок
- Техническая поддержка
- Подбор комплектации
- Индивидуальный подход
- Гибкое ценообразование

Наша организация особенно сильна в поставках модулей, микросхем, пассивных компонентов, ксайленсах (XC), EPF, EPM и силовой электроники.

Большой выбор предлагаемой продукции, различные виды оплаты и доставки, позволят Вам сэкономить время и получить максимум выгоды от сотрудничества с нами!

<u>Перечень производителей, продукцию которых мы поставляем</u> на российский рынок

Panasonic

RENESAS

SIEMENS

гарантия бесперебойности производства и качества выпускаемой продукции

С удовольствием будем прорабатывать для Вас поставки всех необходимых компонентов по текущим запросам для скорейшего выявления групп элементов, по которым сотрудничество именно с нашей компанией будет для Вас максимально выгодным!

С уважением,
Менеджер отдела продаж ООО
«Трейд Электроникс»
Шишлаков Евгений
8 (495)668-30-28 доб 169
manager28@tradeelectronics.ru

http://www.tradeelectronics.ru/