## FEATURES

# Ultrafast symmetric multiplier <br> Function: $\mathrm{V}_{\mathrm{w}}=\boldsymbol{a} \times\left(\mathrm{V}_{\mathrm{x}} \times \mathrm{V}_{\mathrm{y}}\right) / \mathbf{1} \mathrm{V}+\mathrm{V}_{\mathrm{z}}$ <br> Unique design ensures absolute $X Y$-symmetry <br> Identical $X$ and $Y$ amplitude/timing responses <br> Adjustable gain scaling, a <br> DC-coupled throughout, 3 dB bandwidth of 2 GHz <br> Fully differential inputs, may be used single ended <br> Low noise, high linearity <br> Accurate, temperature stable gain scaling <br> Single-supply operation (4.5 V to 5.5 V @ 130 mA ) <br> Low current power-down mode <br> 16-lead LFCSP 

## APPLICATIONS

Wideband multiplication and summing High frequency analog modulation
Adaptive antennas (diversity/phased array)

## Square-law detectors and true rms detectors

## Accurate polynomial function synthesis

DC capable VGA with very fast control

## GENERAL DESCRIPTION

The ADL5391 draws on three decades of experience in advanced analog multiplier products. It provides the same general mathematical function that has been field proven to provide an exceptional degree of versatility in function synthesis.

$$
V_{W}=\alpha \times\left(V_{X} \times V_{Y}\right) / 1 \mathrm{~V}+V_{Z}
$$

The most significant advance in the ADL5391 is the use of a new multiplier core architecture, which differs markedly from the conventional form that has been in use since 1970. The conventional structure that employs a current mode, translinear core is fundamentally asymmetric with respect to the X and Y inputs, leading to relative amplitude and timing misalignments that are problematic at high frequencies. The new multiplier core eliminates these misalignments by offering symmetric signal paths for both X and Y inputs. The Z input allows a signal to be added directly to the output. This can be used to cancel a carrier or to apply a static offset voltage.

The fully differential $\mathrm{X}, \mathrm{Y}$, and Z input interfaces are operational over a $\pm 2 \mathrm{~V}$ range, and they can be used in single-ended fashion. The user can apply a common mode at these inputs to vary from the internally set $\mathrm{V}_{\text {pos }} / 2$ down to ground. If these inputs
are ac-coupled, their nominal voltage will be $\mathrm{V}_{\mathrm{pos}} / 2$. These input interfaces each present a differential $500 \Omega$ input impedance up to approximately 700 MHz , decreasing to $50 \Omega$ at 2 GHz . The gain scaling input, GADJ, can be used for fine adjustment of the gain scaling constant ( $\alpha$ ) about unity.

The differential output can swing $\pm 2 \mathrm{~V}$ about the $\mathrm{V}_{\text {pos }} / 2$ common-mode and can be taken in a single-ended fashion as well. The output common mode is designed to interface directly to the inputs of another ADL5391. Light dc loads can be ground referenced; however, ac-coupling of the outputs is recommended for heavy loads.

The ENBL pin allows the ADL5391 to be disabled quickly to a standby mode. It operates off supply voltages from 4.5 V to 5.5 V while consuming approximately 130 mA .

The ADL5391 is fabricated on Analog Devices proprietary, high performance, 65 GHz , SOI complementary, SiGe bipolar IC process. It is available in a 16 -lead, Pb -free, LFCSP and operates over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. Evaluation boards are available.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

## ADL5391

## TABLE OF CONTENTS

Features ........................................................................................ 1
Applications....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ........................................................................ 1
Revision History .............................................................................. 2
Specifications.................................................................................... 3
Absolute Maximum Ratings........................................................... 5
ESD Caution................................................................................. 5

## REVISION HISTORY

## 7/06—Revision 0: Initial Version

## SPECIFICATIONS

$\mathrm{V}_{\text {POS }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{L}}=50 \Omega$ differential, ZPLS $=\mathrm{ZMNS}=$ open, GADJ = open, unless otherwise noted. Transfer function: $\mathrm{W}=$ $\mathrm{XY} / 1 \mathrm{~V}+\mathrm{Z}$, common mode internally set to 2.5 V nominal.
Table 1.

| Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MULTIPLICAND INPUTS (X, Y) <br> Differential Voltage Range Common-Mode Range Input Offset Voltage vs. Temperature Differential Input Impedance <br> Fundamental Feedthrough, X or Y <br> Gain <br> DC Linearity <br> Scale Factor CMRR | ```XPLS, XMNS, YPLS, YMNS Differential, common mode \(=2.5 \mathrm{~V}\) For full differential range DC \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \(\mathrm{f}=\mathrm{dc}\) \(\mathrm{f}=2 \mathrm{GHz}\) \(\mathrm{f}=50 \mathrm{MHz}, \mathrm{X}(\mathrm{Y})=0 \mathrm{~V}, \mathrm{Y}(\mathrm{X})=0 \mathrm{dBm}\), relative to condition where \(\mathrm{X}(\mathrm{Y})=1 \mathrm{~V}\) \(\mathrm{f}=1 \mathrm{GHz}\) \(\mathrm{X}=50 \mathrm{MHz}\) and \(0 \mathrm{dBm}, \mathrm{Y}=1 \mathrm{~V}\) \(X=1 \mathrm{GHz}\) and \(0 \mathrm{dBm}, \mathrm{Y}=1 \mathrm{~V}\) X to output, \(\mathrm{Y}=1 \mathrm{~V}\) \(X=Y=1 \mathrm{~V}\) \(\pm 1 \mathrm{~V}-\mathrm{p}, \mathrm{Y}=1 \mathrm{~V}, \mathrm{f}=50 \mathrm{MHz}\)``` | 0 | 20 <br> $\pm 20$ <br> 500 <br> 150 <br> -42 <br> -35 <br> 0.5 <br> $-1.33$ <br> 1 <br> 1 <br> 42.1 | 2.5 | $V p-p$ $V$ $m V$ $m V$ $\Omega$ $\Omega$ $d B$ $d B$ $d B$ $d B$ $\%$ FS $V / V$ $d B$ |
| SUMMING INPUT (Z) <br> Differential Voltage Range Common-Mode Range Gain Differential Input Impedance | ZPLS, ZMNS <br> Common mode from 2.5 V down to COMM For full differential range <br> From Z to $\mathrm{W}, \mathrm{f} \leq 10 \mathrm{MHz}, 0 \mathrm{dBm}, \mathrm{X}=\mathrm{Y}=1 \mathrm{~V}$ $\begin{aligned} & \mathrm{f}=\mathrm{dc} \\ & \mathrm{f}=2 \mathrm{GHz} \end{aligned}$ | 0 | $\begin{aligned} & 2 \\ & 0.1 \\ & 500 \\ & 150 \end{aligned}$ | 2.5 | $\begin{aligned} & \text { Vp-p } \\ & V \\ & d B \\ & \Omega \\ & \Omega \end{aligned}$ |
| OUTPUTS (W) <br> Differential Voltage Range <br> Common-Mode Output <br> Output Noise Floor <br> Output Noise Voltage Spectral Density <br> Output Offset Voltage vs. Temperature <br> Differential Output Impedance | WPLS, WMNS <br> No external common mode $\begin{aligned} & X=Y=1 \mathrm{Vdc} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{GHz} \\ & \mathrm{X}=\mathrm{Y}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{GHz} \\ & \mathrm{X}=\mathrm{Y}=0, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{Z}=0 \mathrm{~V} \text { differential } \end{aligned}$ $\begin{aligned} & f=d c \\ & f=200 \mathrm{MHz} \\ & \mathrm{f}=2 \mathrm{GHz} \end{aligned}$ |  | $\pm 2$ $V_{\text {POS }}-2.5$ -133 -133 -138 -138 26.7 19 $\pm 19$ 0 75 500 |  | V <br> V <br> $\mathrm{dBm} / \mathrm{Hz}$ <br> $\mathrm{dBm} / \mathrm{Hz}$ <br> $\mathrm{dBm} / \mathrm{Hz}$ <br> $\mathrm{dBm} / \mathrm{Hz}$ <br> $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ <br> mV <br> mV <br> $\Omega$ <br> $\Omega$ <br> $\Omega$ |
| DYNAMIC CHARACTERISTICS <br> Frequency Range <br> Slew Rate <br> Settling Time <br> Second Harmonic Distortion <br> Third Harmonic Distortion | $\begin{aligned} & X, Y, Z \text { to } \mathrm{W} \\ & \mathrm{~W} \text { from }-2.0 \mathrm{~V} \text { to }+2.0 \mathrm{~V}, 150 \Omega \\ & \mathrm{X} \text { stepped from }-1 \mathrm{~V} \text { to }+1 \mathrm{~V}, \mathrm{Z}=0 \mathrm{~V}, 150 \Omega \\ & X(Y)=0 \mathrm{dBm}, \mathrm{Y}(\mathrm{X})=1 \mathrm{~V}, \text { fund }=10 \mathrm{MHz} \\ & \text { Fund }=200 \mathrm{MHz} \\ & X(Y)=0 \mathrm{dBm}, \mathrm{Y}(\mathrm{X})=1 \mathrm{~V}, \text { fund }=10 \mathrm{MHz} \\ & \text { Fund }=200 \mathrm{MHz} \end{aligned}$ | 0 | $\begin{aligned} & 8800 \\ & 2.1 \\ & -60 \\ & -51 \\ & -61.5 \\ & -51.6 \end{aligned}$ | 2 | GHz <br> $\mathrm{V} / \mu \mathrm{s}$ <br> ns <br> dBc <br> dBc <br> dBc <br> dBc |

## ADL5391

| Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OIP3 | Two-tone IP3 test; $\mathrm{X}(\mathrm{Y})=100 \mathrm{mV}$ p-p/tone ( -10 dBm into $50 \Omega$ ), $\mathrm{Y}(\mathrm{X})=1$ |  |  |  |  |
|  | $\mathrm{f} 1=49 \mathrm{MHz}, \mathrm{f}=50 \mathrm{MHz}$ |  | 26.5 |  | dBm |
|  | $\mathrm{f} 1=999 \mathrm{MHz}$, f2 $=1 \mathrm{GHz}$ |  | 14 |  | dBm |
| OIP2 | $\mathrm{f} 1=49 \mathrm{MHz}, \mathrm{f}=50 \mathrm{MHz}$ |  | 45.5 |  | dBm |
|  | $\mathrm{f} 1=999 \mathrm{MHz}, \mathrm{f} 2=1 \mathrm{GHz}$ |  | 28 |  | dBm |
| Output 1 dB Compression Point | $\mathrm{X}(\mathrm{Y})$ to $\mathrm{W}, \mathrm{Y}(\mathrm{X})=1 \mathrm{~V}, 50 \mathrm{MHz}$ |  | 15.1 |  | dBm |
|  | 1 GHz |  | 13.2 |  | dBm |
| Group Delay | 200 MHz |  | 0.5 |  |  |
|  | 1 GHz |  | 0.7 |  |  |
| Differential Gain Error, X/Y | $\mathrm{f}=3.58 \mathrm{MHz}$ |  | 2.7 |  |  |
| Differential Phase Error, $\mathrm{X} / \mathrm{Y}$ | $\mathrm{f}=3.58 \mathrm{MHz}$ |  | 0.23 |  | Degrees |
| GAIN TRIMMING (a) | GADJ |  |  |  |  |
| Nominal Bias | Unconnected |  | 1.12 |  | V |
| Input Range |  | 0 |  | 2 | V |
| Gain Adjust Range | Input 0 V to 2 V |  | 9.5 |  | dB |
| REFERENCE VOLTAGE | VMID |  | $\mathrm{V}_{\mathrm{pos}} / 2$ |  | V |
| Source Current | Common-mode for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}=2.5 \mathrm{~V}$ |  |  | 50 | mA |
| POWER AND ENABLE | $\mathrm{V}_{\text {Pos, }}$ COMM, ENBL |  |  |  |  |
| Supply Voltage Range |  | 4.5 |  | 5.5 | V |
| Total Supply Current | Common-mode for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}=2.5 \mathrm{~V}$ |  | 135 |  | mA |
| Disable Current | ENBL $=0 \mathrm{~V}$ |  | 7.5 |  | mA |
| Disable Threshold | High to Low |  | 1.5 |  | V |
| Enable Response Time | Delay following high-to-low transition until device meets full specifications |  | 150 |  | ns |
| Disable Response Time | Delay following low-to-high transition until device produces full attenuation |  | 50 |  | ns |

## ABSOLUTE MAXIMUM RATINGS

Table 2.

| Parameter | Rating |
| :--- | :--- |
| Supply Voltage V Vos | 5.5 V |
| ENBL | 5.5 V |
| XPLS, XMNS, YPLS, YMNS, ZPLS, ZMNS | $\mathrm{V}_{\text {POS }}$ |
| GADJ | $\mathrm{V}_{\text {POS }}$ |
| Internal Power Dissipation | 800 mW |
| $\theta_{\mathrm{JA}}$ (With Pad Soldered to Board) | $73^{\circ} \mathrm{C} / \mathrm{W}$ |
| Maximum Junction Temperature | $150^{\circ} \mathrm{C}$ |
| Operating Temperature Range | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering 60 sec ) | $300^{\circ} \mathrm{C}$ |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

## ADL5391

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

| Pin No. | Mnemonic | Description |
| :--- | :--- | :--- |
| 1,7 | COMM | Device Common. Connect via lowest possible impedance to external circuit common. |
| 2 to 4 | Vpos | Positive Supply Voltage. 4.5 V to 5.5 V. |
| 5,6 | WPLS, WMNS | Differential Outputs. |
| 8 | GADJ | Denominator Scaling Input. |
| 9,10 | ZMNS, ZPLS | Differential Intercept Inputs. Must be ac-coupled. Differential impedance $50 \Omega$ nominal. |
| 11,12 | YPLS, YMNS | Differential X-Multiplicand Inputs. |
| 13,14 | XPLS, XMNS | Differential Y-Multiplicand Inputs. |
| 15 | ENBL | Chip Enable. High to enable. |
| 16 | VMID | VPos/2 Reference Output. Connect decoupling capacitor to circuit common. |

## TYPICAL PERFORMANCE CHARACTERISTICS

GADJ $=$ open.


Figure 3. Full Range DC Cross Plots


Figure 4. Magnified DC Cross Plots


Figure 5. Gain vs. GADJ $(X=Y=1)$


Figure 6. Gain and Phase vs. Frequency of $X$ Swept and $Y=1 \mathrm{~V}, Z=0 \mathrm{~V}$, $P_{\text {IN }}=0 d B m$


Figure 7. Gain and Phase vs. Frequency of $Z$ Inputs, $X=0 \mathrm{~V}, Y=0 \mathrm{~V}$, $P_{I N}=0 \mathrm{dBm}$


Figure 8. Large Signal Pulse Response

## ADL5391



Figure 9. Small Signal Pulse Response


Figure 10. Harmonic Distortion at 10 MHz and 200 MHz ; 0 dBm Input to $X(Y)$ Channels


Figure 11. $X(Y)$ Offset Drift vs. Temperature


Figure 12. OIP3 vs. Frequency
Pin $0 \mathrm{dBm}, Y=1 \mathrm{Vdc}, 0.5 \mathrm{Vdc}$


Figure 13. $Z(W)$ Offset Over Temperature


Figure 14. Noise vs. Frequency


Figure 15. Input S11


Figure 16. Output S22

## GENERAL DESCRIPTION

## BASIC THEORY

The multiplication of two analog variables is a fundamental signal processing function that has been around for decades. By convention, the desired transfer function is given by

$$
\begin{equation*}
W=\alpha X Y / U+Z \tag{1}
\end{equation*}
$$

where:
$X$ and $Y$ are the multiplicands.
$U$ is the multiplier scaling factor.
$\alpha$ is the multiplier gain.
$W$ is the product output.
$Z$ is a summing input.
All the variables and the scaling factor have the dimension of volts.
In the past, analog multipliers, such as the AD835, were implemented almost exclusively with a Gilbert Cell topology or a close derivative. The inherently asymmetric signal paths for X and Y inevitably create amplitude and delay imbalances between X and Y . In the ADL5391, the novel multiplier core provides absolute symmetry between X and Y , minimizing scaling and phasing differences inherent in the Gilbert Cell.

The simplified block diagram of the ADL5391 shows a main multiplier cell that receives inputs $X$ and $Y$ and a second multiplier cell in the feedback path around an integrating buffer. The inputs to this feedback multiplier are the difference of the output signal and the summing input, $\mathrm{W}-\mathrm{Z}$, and the internal scaling reference, U . At dc, the integrating buffer ensures that the output of both multipliers is exactly 0 , therefore

$$
\begin{equation*}
(W-Z) x U=X Y, \text { or } W=X Y / U+Z \tag{2}
\end{equation*}
$$

By using a feedback multiplier that is identical to the main multiplier, the scaling is traced back solely to U , which is an accurate reference generated on-chip. As is apparent in Equation 2, noise, drift, or distortion that is common to both multipliers is rejected to first-order because the feedback multiplier essentially compensates the impairments generated in the main multiplier.

The scaling factor, U , is fixed by design to 1.12 V . However, the multiplier gain, $\alpha$, can be adjusted by driving the GADJ pin with a voltage ranging from 0 V to 2 V . If left floating, then $\alpha=1$ or 0 dB , and the overall scaling is simply $\mathrm{U}=1 \mathrm{~V}$. For VGADJ $=0 \mathrm{~V}$, the gain is lowered by approximately 4 dB ; for VGADJ $=2 \mathrm{~V}$, the gain is raised by approximately 6 dB . Figure 5 shows the relationship between $\alpha(\mathrm{V} / \mathrm{V})$ and VGADJ.

The small-signal bandwidth from the inputs $\mathrm{X}, \mathrm{Y}$, and Z to the output W is a single-pole response. The pole is inversely proportional to $\alpha$. For $\alpha=1$ (GADJ floating), the bandwidth is about 2 GHz ; for $\alpha>1$, the bandwidth is reduced; and for $\alpha<1$, the bandwidth is increased.

All input ports, $\mathrm{X}, \mathrm{Y}$, and Z , are differential and internally biased to midsupply, $\mathrm{V}_{\mathrm{Pos}} / 2$. The differential input impedance is $500 \Omega$ up to 100 MHz , rolling off to $50 \Omega$ at 2 GHz . All inputs can be driven in single-ended fashion and can be ac-coupled. In dc-coupled operation, the inputs can be biased to a common mode that is lower than $V_{\text {Pos }} / 2$. The bias current flowing out of the input pins to accommodate the lower common mode is subtracted from the 50 mA total available from the internal reference $V_{\text {pos }} / 2$ at the VREF pin. Each input pin presents an equivalent $250 \Omega$ dc resistance to $\mathrm{V}_{\text {pos }} / 2$. If all six input pins sit 1 V below $\mathrm{V}_{\mathrm{pos}} / 2$, a total of $6 \times 1 \mathrm{~V} / 250 \Omega=24 \mathrm{~mA}$ must flow internally from VREF to the input pins.

## Calibration

The dc offset of the ADL5391 is approximately 20 mV but changes over temperature and has variation from part to part (see Figure 4). It is generally not of concern unless the ADL5391 is operated down to dc (close to the point $\mathrm{X}=0 \mathrm{~V}$ or $\mathrm{Y}=0 \mathrm{~V}$ ), where 0 V is expected on the output $(\mathrm{W}=0 \mathrm{~V})$. For example, when the ADL5391 is used as a VGA and a large amount of attenuation is needed, the maximum attenuation is determined by the input dc offset.

Applying the proper voltage on the Z input removes the W offset. Calibration can be accomplished by making the appropriate cross plots and adjusting the Z input to remove the offset.

Additionally, gain scaling can be adjusted by applying a dc voltage to the GADJ pin, as shown in Figure 5.

## BASIC CONNECTIONS

## Multiplier Connections

The best ADL5391 performance is achieved when the $\mathrm{X}, \mathrm{Y}$, and Z inputs and W output are driven differentially; however, they can be driven single-ended. Single-ended-to-differential transformations (or differential-to-single-ended transformations) can be done using a balun or active components, such as the AD8313, the AD8132 (both with operation down to dc), or the AD8352 (for higher drive capability). If using the ADL5391 single-ended without ac coupling capacitors, the reference voltage of 2.5 V needs to be taken into account. Voltages above 2.5 V are positive voltages and voltages below 2.5 V are negative voltages. Care needs to be taken not to load the ADL5391 too heavily, the maximum reference current available is 50 mA .

## Matching the Input/Output

The input and output impedance's of the ADL5391 change over frequency, making it difficult to match over a broad frequency range (see Figure 15 and Figure 16). The evaluation board is matched for lower frequency operation, and the impedance change at higher frequencies causes the change in gain seen in Figure 6. If desired, the user of the ADL5391 can design a matching network to fit their application.

## Wideband Voltage-Controlled Amplifier/Amplitude Modulator

Most of the data for the ADL5391 was collected by using it as a fast reacting analog VGA. Either X or Y inputs can be used for the RF input (and the other as the very fast analog control), because either input can be used from dc to 2 GHz . There is a linear relationship between the analog control and the output of the multiplier in the VGA mode. Figure 6 and Figure 7 show the dynamic range available in VGA mode (without optimizing the dc offsets).

The speed of the ADL5391 in VGA mode allows it to be used as an amplitude modulator. Either or both inputs can have modulation or CW applied. AM modulation is achieved by feeding CW into X ( or Y ) and adding AM modulation to the Y (or X) input.

## Squaring and Frequency Doubling

Amplitude domain squaring of an input signal, E , is achieved simply by connecting the X and Y inputs in parallel to produce an output of $E^{2}$. The input can be single-ended, differential, or through a balun (frequency range and dynamic range can be limited if used single ended).

When the input is a sine wave $E \sin (\omega t)$, a signal squarer behaves as a frequency doubler, because

$$
\begin{equation*}
[E \sin (\omega t)]^{2}=\frac{E^{2}}{2}(1-\cos (2 \omega t)) \tag{3}
\end{equation*}
$$

Ideally, when used for squaring and frequency doubling, there is no component of the original signals on the output. Because of internal offsets, this is not the case. If Equation 3 were rewritten to include theses offsets, it could separate into three output terms (Equation 4).

$$
\begin{align*}
& \lfloor E \sin (\omega t)+O F S T] \times[E \sin (\omega t)+O F S T]= \\
& \frac{E^{2}}{2}[\cos (2 \omega t)]+2 E \sin (\omega t) O F S T+\left(O F S T^{2}+\frac{E^{2}}{2}\right) \tag{4}
\end{align*}
$$

where:
The dc component is $\mathrm{OFST}^{2}+\mathrm{E}^{2} / 2$.
The input signal bleedthrough is $2 \mathrm{Esin}(\omega \mathrm{t}) \mathrm{OFST}$.
The input squared is $\mathrm{E}^{2} / 2[\cos (2 \omega \mathrm{t})]$.

The dc component of the output is related to the square of both the offset (OFST) and the signal input amplitude (E). The offset can be found in Figure 4 and is approximately 20 mV . The second harmonic output grows with the square of the input amplitude, and the signal bleedthrough grows proportionally with the input signal. For smaller signal amplitudes, the signal bleedthrough can be higher than the second harmonic component. As the input amplitude increases, the second harmonic component grows much faster than the signal bleedthrough and becomes the dominant signal at the output. If the X and Y inputs are driven too hard, third harmonic components will also increase.

For best performance creating harmonics, the ADL5391 should be driven differentially. Figure 17 shows the performance of the ADL5391 when used as a harmonic generator (the evaluation board was used with R9 and R10 removed and R2 $=56.2 \Omega$ ). If dc operation is necessary, the ADL5391 can be driven single ended (without the dc blocks). The flatness of the response over a broad frequency range depends on the input/output match. The fundamental bleed through not only depends on the amount of power put into the device but also depends on matching the unused differential input/output to the same impedance as the used input/output. Figure 18 shows the performance of the ADL5391 when driven single ended (without ac coupling capacitors), and Figure 19 shows the schematic of the setup. A resistive input/output match were used to match the input from dc to 1 GHz and the output from dc to 2 GHz . Reactive matching can be used for more narrow frequency ranges. When matching the input/output of the ADL5391, care needs to be taken not to load the ADL5391 too heavily; the maximum reference current available is 50 mA .


Figure 17. ADL5391 Used as a Harmonic Generator

## ADL5391



Figure 18. Single-Ended (DC) ADL5391 Used as a Harmonic Generator


Figure 19. Setup for Single-Ended Data

## Use as a Detector

The ADL5391 can be used as a square law detector. When amplitude squaring is performed, there are components of the multiplier output that correlate to the signal bleedthrough and second harmonic, as seen in Equation 4. However, as noted in the Squaring and Frequency Doubling section, there is also a dc component that is directly related to the offset and the squared input magnitude. If a signal is split and feed into the X and Y inputs and a low-pass filter were place on the output, the resulting dc signal would be directly related to the square of the input magnitude. The intercept of the response will shift slightly from part to part (and over temperature) with the offset, but this can
be removed through calibration. Figure 20 shows the response of the ADL5391 as a square law detector, Figure 21 shows the error vs. the input power, and Figure 22 shows the configuration used.


Figure 20. ADL5391 Used as Square Law Detector DC Output vs. Square of Input


Figure 21. ADL5391Used as a Square Law Detector Error vs. Power Input


Figure 22. Schematic for ADL5391 Used as Square Law Detector

## EVALUATION BOARD



Figure 23. ADL5391-EVALZ Evaluation Board Schematic


Figure 24. Component Side Metal of Evaluation Board


Figure 25. Component Side Silkscreen of Evaluation Board

## ADL5391

Table 4. Evaluation Board Configuration Options


## OUTLINE DIMENSIONS



ORDERING GUIDE

| Model | Temperature Range | Package Description | Package Option | Ordering Quantity |
| :--- | :--- | :--- | :--- | :--- |
| ADL5391ACPZ-R2 ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $16-$ Lead LFCSP_VQ | $\mathrm{CP}-16-3$ | 250 |
| ADL5391ACPZ-R7 ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $16-$ Lead LFCSP_VQ | CP-16-3 | 1,500 |
| ADL5391ACPZ-WP $^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 -Lead LFCSP_VQ | CP-16-3 | 50 |
| ADL5391-EVALZ ${ }^{1}$ |  | Evaluation Board |  | 1 |

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

## ADL5391

## NOTES

гарантия бесперебойности производства и

## О компании

ООО "ТрейдЭлектроникс" - это оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов. Реализуемая нашей компанией продукция насчитывает более полумиллиона наименований.

Благодаря этому наша компания предлагает к поставке практически не ограниченный ассортимент компонентов как оптовыми, мелкооптовыми партиями, так и в розницу.

Наличие собственной эффективной системы логистики обеспечивает надежную поставку продукции по конкурентным ценам в точно указанные сроки.

Срок поставки со стоков в Европе и Америке - от 3 до 14 дней.
Срок поставки из Азии - от 10 дней.
Благодаря развитой сети поставщиков, помогаем в поиске и приобретении экзотичных или снятых с производства компонентов.

Предоставляем спец цены на элементы для создания инженерных сэмплов.

## Упорный труд, качественный результат дают нам право быть уверенными в себе и надежными для наших клиентов.

## Наша компания это:

Гарантия качества поставляемой продукции
Широкий ассортимент
Минимальные сроки поставок
Техническая поддержка
Подбор комплектации
Индивидуальный подход
Гибкое ценообразование
Наша организация особенно сильна в поставках модулей, микросхем, пассивных компонентов, ксайленсах (XC), EPF, EPM и силовой электроники.

Большой выбор предлагаемой продукции, различные виды оплаты и доставки, позволят Вам сэкономить время и получить максимум выгоды от сотрудничества с нами!

## Trade Electronics．ru

гарантия бесперебойности производства и
качества выпускаемой продукции

Перечень производителей，продукцию которых мы поставляем на российский рынок

| AMDE | $\square \begin{aligned} & \text { ANALOG } \\ & \text { DEVICES }\end{aligned}$ | Botrins | corleraft |
| :---: | :---: | :---: | :---: |
| élantec | HMrris | （infineon | JRC |
| FICFEr |  | nichicon | － Phlups $^{3}$ |
| RaHm | ［7\％ | 【 Sipex |  |
| ［畾TOKO | $\underset{1}{7}$ | （1）Vinbond | （2llegw： |
|  | Eura－ma\％m | YPEXAR | HITACH |
| （intel | Lattice | munta | OKI |
| Qualcomm | Snmsume | SHARP | SONY |
| 险TDK | TOSHIBA | X | Antroa |
| Anvis | de | G） | FAIRCHILO |
| нотек\％ | International IOR Rectifier | CTUIEM | $\boldsymbol{Q}^{\text {Seationat }}$ Sendictor |
| 50 | 想reatite | SANYO | eshindengen |
| 5 | ${ }^{7}$ 1rection | （1）Tund | E．XILINX |
| Amphenol | Bay Linear | \％${ }^{\text {Ofinusioac }}$ | DALLAS |
| FUjiTSU | 9／DT． | intersil， | MAXIM |
| moler | NEC | Panasonic | renesas |
| SII ${ }^{\circ}$ | SIEMENS | $\triangle \overline{7 /}$ |  |
|  | $\sqrt{\text { ishar }}$ | ZFTEX |  |

## Trade Electronics.ru

гарантия бесперебойности производства и качества выпускаемой продукции

С удовольствием будем прорабатывать для Вас поставки всех необходимых компонентов по текущим запросам для скорейшего выявления групп элементов, по которым сотрудничество именно с нашей компанией будет для Вас максимально выгодным!

С уважением,
Менеджер отдела продаж ООО
«Трейд Электроникс»
Шишлаков Евгений
8 (495)668-30-28 доб 169
manager28@tradeelectronics.ru
http://www.tradeelectronics.ru/

