

Data Sheet

June 2003

```
FN4878.4
```

1 Microamp, +3V to +5.5V, 1Mbps, RS-232 Transceivers with Enhanced Automatic Powerdown

The Intersil ICL32XX devices are 3.0V to 5.5V powered RS-232 transmitters/receivers which meet EIA/TIA-232 and V.28/V.24 specifications, even at V_{CC} = 3.0V. Targeted applications are PDAs, Palmtops, and notebook and laptop computers where the low operational, and even lower standby, power consumption is critical. Efficient on-chip charge pumps, coupled with manual and enhanced automatic powerdown functions, reduce the standby supply current to a 1µA trickle. Small footprint packaging, and the use of small, low value capacitors ensure board space savings as well. Data rates greater than 1Mbps are guaranteed at worst case load conditions. This family is fully compatible with 3.3V only systems, mixed 3.3V and 5.0V systems, and 5.0V only systems.

The ICL3245 is a 3 driver, 5 receiver device that provides a complete serial port suitable for laptop or notebook computers. It also includes a noninverting always-active receiver for "wake-up" capability.

These devices, feature an enhanced automatic

powerdown function which powers down the on-chip powersupply and driver circuits. This occurs when all receiver and transmitter inputs detect no signal transitions for a period of 30s. These devices power back up, automatically, whenever they sense a transition on any transmitter or receiver input.

Table 1 summarizes the features of the device represented by this data sheet, while Application Note AN9863 summarizes the features of each device comprising the ICL32XX 3V family.

Features

- ±15kV ESD Protected (Human Body Model)
- Manual and Enhanced Automatic Powerdown Features
- Drop in Replacements for MAX3225, MAX3227, MAX3245
- Meets EIA/TIA-232 and V.28/V.24 Specifications at 3V
- Latch-Up Free
- On-Chip Voltage Converters Require Only Four External 0.1µF Capacitors
- Guaranteed Mouse Driveability (ICL3245)
- "Ready to Transmit" Indicator Output (ICL3225, ICL3227)
- · Receiver Hysteresis For Improved Noise Immunity
- Guaranteed Minimum Data Rate 1Mbps
- Low Skew at Transmitter/Receiver Input Trip Points. . . 10ns
- Wide Power Supply Range Single +3V to +5.5V

Applications

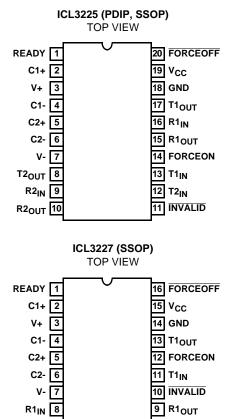
- Any System Requiring RS-232 Communication Ports
 - Battery Powered, Hand-Held, and Portable Equipment
 - Laptop Computers, Notebooks, Palmtops
 - Modems, Printers and other Peripherals
 - Digital Cameras
 - Cellular/Mobile Phones

Related Literature

 Technical Brief TB363 "Guidelines for Handling and Processing Moisture Sensitive Surface Mount Devices (SMDs)"

PART NUMBER	NO. OF Tx.	NO.OF Rx.	NO. OF MONITOR Rx. (R _{OUTB})	DATA RATE (kbps)	Rx. ENABLE FUNCTION?	READY OUTPUT?	MANUAL POWER- DOWN?	ENHANCED AUTOMATIC POWERDOWN FUNCTION?
ICL3225	2	2	0	1000	No	Yes	Yes	Yes
ICL3227	1	1	0	1000	No	Yes	Yes	Yes
ICL3245	3	5	1	1000	No	No	Yes	Yes

TABLE 1. SUMMARY OF FEATURES

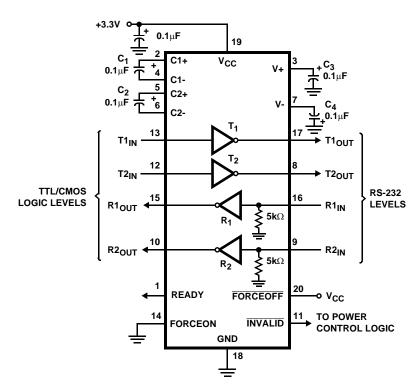

Ordering Information


(NOTE 1) PART NO.	TEMP. RANGE (°C)	PACKAGE	PKG. DWG. #
ICL3225CA	0 to 70	20 Ld SSOP	M20.209
ICL3225IA	-40 to 85	20 Ld SSOP	M20.209
ICL3225CP	0 to 70	20 Ld PDIP	E20.3
ICL3227CA	0 to 70	16 Ld SSOP	M16.209
ICL3227IA	-40 to 85	16 Ld SSOP	M16.209
ICL3245CA	0 to 70	28 Ld SSOP	M28.209
ICL3245IA	-40 to 85	28 Ld SSOP	M28.209
ICL3245CB	0 to 70	28 Ld SOIC	M28.3
ICL3245IB	-40 to 85	28 Ld SOIC	M28.3
ICL3245CV	0 to 70	28 Ld TSSOP	M28.173
ICL3245IV	-40 to 85	28 Ld TSSOP	M28.173

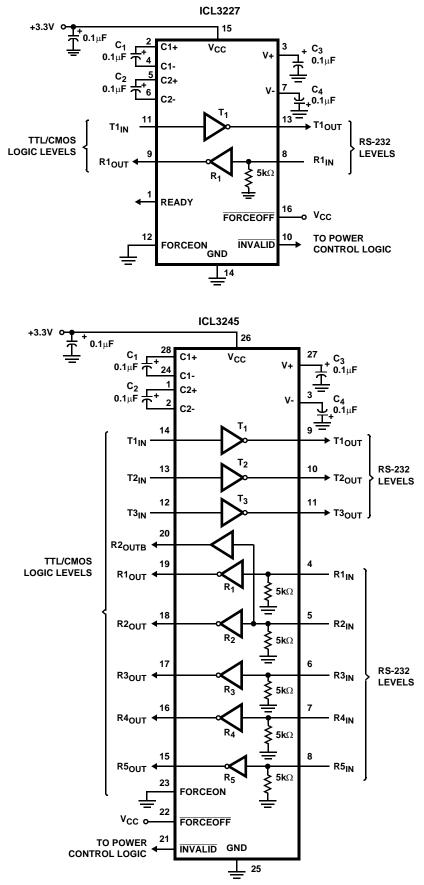
NOTE:

1. Most surface mount devices are available on tape and reel; add "-T" to suffix.

Pinout



Pin Descriptions


PIN	FUNCTION
V _{CC}	System power supply input (3.0V to 5.5V).
V+	Internally generated positive transmitter supply (+5.5V).
V-	Internally generated negative transmitter supply (-5.5V).
GND	Ground connection.
C1+	External capacitor (voltage doubler) is connected to this lead.
C1-	External capacitor (voltage doubler) is connected to this lead.
C2+	External capacitor (voltage inverter) is connected to this lead.
C2-	External capacitor (voltage inverter) is connected to this lead.
T _{IN}	TTL/CMOS compatible transmitter Inputs.
T _{OUT}	RS-232 level (nominally ±5.5V) transmitter outputs.
R _{IN}	RS-232 compatible receiver inputs.
R _{OUT}	TTL/CMOS level receiver outputs.
R _{OUTB}	TTL/CMOS level, noninverting, always enabled receiver outputs.
INVALID	Active low output that indicates if no valid RS-232 levels are present on any receiver input.
READY	Active high output that indicates when the ICL32XXE is ready to transmit (i.e., $V- \leq -4V$)
FORCEOFF	Active low to shut down transmitters and on-chip power supply. This overrides any automatic circuitry and FORCEON (see Table 2).
FORCEON	Active high input to override automatic powerdown circuitry thereby keeping transmitters active. (FORCEOFF must be high).

Typical Operating Circuits

ICL3225

Typical Operating Circuits (Continued)

Absolute Maximum Ratings

V _{CC} to Ground. -0.3V to 6V V+ to Ground. -0.3V to 7V V- to Ground +0.3V to 7V V+ to V- 14V Input Voltages 14V
T _{IN} , FORCEOFF, FORCEON
Output Voltages T _{OUT} ±13.2V
R _{OUT} , INVALID, READY0.3V to V _{CC} +0.3V Short Circuit Duration T _{OUT} Continuous
ESD Rating

Operating Conditions

Temperature Range	
ICL32XXC	0 ^o C to 70 ^o C
ICL32XXI	

Thermal Information

Thermal Resistance (Typical, Note 2)	θ_{JA} (°C/W)
20 Ld PDIP Package	80
28 Ld SOIC Package	75
16 Ld SSOP Package	145
20 Ld SSOP Package	135
28 Ld SSOP Package	100
28 Ld TSSOP Package	125
Moisture Sensitivity (see Technical Brief TB363)	
All Packages	Level 1
Maximum Junction Temperature (Plastic Package)	150 ⁰ C
Maximum Storage Temperature Range65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 10s) (SOIC, SSOP, TSSOP - Lead Tips Only)	300 ⁰ C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

2. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

$\label{eq:conditions: V_{CC} = 3V to 5.5V, C_1 - C_4 = 0.1 \mu F; \mbox{ Unless Otherwise Specified.} \\ Typicals are at T_A = 25^0 C$

PARAMETER	TEST	TEMP (^o C)	MIN	ТҮР	МАХ	UNITS	
DC CHARACTERISTICS			1		1 1		
Supply Current, Automatic Powerdown	All R _{IN} Open, FORCEC	$PN = GND, \overline{FORCEOFF} = V_{CC}$	25	-	1.0	10	μΑ
Supply Current, Powerdown	FORCEOFF = GND		25	-	1.0	10	μA
Supply Current,	All Outputs Unloaded,	ICL3245, V _{CC} = 3.0V	25	-	0.3	1.0	mA
Automatic Powerdown Disabled	$\frac{\text{FORCEON}}{\text{FORCEOFF}} = V_{\text{CC}}$	ICL322X, V _{CC} = 3.15V	25	-	0.3	1.0	mA
LOGIC AND TRANSMITTER INPU	JTS AND RECEIVER OUT	PUTS					
Input Logic Threshold Low	T _{IN} , FORCEON, FORC	EOFF	Full	-	-	0.8	V
Input Logic Threshold High	T _{IN} , FORCEON,	$V_{CC} = 3.3V$	Full	2.0	-	-	V
	FORCEOFF	$V_{CC} = 5.0V$	Full	2.4	-	-	V
Transmitter Input Hysteresis						-	V
Input Leakage Current	T _{IN} , FORCEON, FORC	EOFF	Full	-	±0.01	±1.0	μA
Output Leakage Current	FORCEOFF = GND		Full	-	±0.05	±10	μA
Output Voltage Low	I _{OUT} = 1.6mA		Full	-	-	0.4	V
Output Voltage High	I _{OUT} = -1.0mA		Full	V _{CC} -0.6	V _{CC} -0.1	-	V
RECEIVER INPUTS							
Input Voltage Range			Full	-25	-	25	V
Input Threshold Low	$V_{CC} = 3.3V$	$V_{CC} = 3.3V$			1.2	-	V
	$V_{CC} = 5.0V$	25	0.8	1.5	-	V	
Input Threshold High	V _{CC} = 3.3V	$V_{CC} = 3.3V$ $V_{CC} = 5.0V$			1.5	2.4	V
	V _{CC} = 5.0V				1.8	2.4	V
Input Hysteresis			25	-	0.5	-	V
Input Resistance			25	3	5	7	kΩ

Electrical Specifications

Test Conditions: V_{CC} = 3V to 5.5V, C_1 - C_4 = 0.1 $\mu F;$ Unless Otherwise Specified. Typicals are at T_A = 25°C $\,$ (Continued)

PARAMETER	TEST	TEMP (⁰ C)	MIN	ТҮР	МАХ	UNITS	
TRANSMITTER OUTPUTS							
Output Voltage Swing	Voltage SwingAll Transmitter Outputs Loaded with $3k\Omega$ to Ground				±5.4	-	V
Output Resistance	$V_{CC} = V + = V - = 0V$, Tra	ansmitter Output = $\pm 2V$	Full	300	10M	-	Ω
Output Short-Circuit Current			Full	-	±35	±60	mA
Output Leakage Current	$V_{OUT} = \pm 12V, V_{CC} = 0V$ Automatic Powerdown of	V or 3V to 5.5V or FORCEOFF = GND	Full	-	-	±25	μA
MOUSE DRIVEABILITY							
Transmitter Output Voltage (See Figure 11)		$_{\rm IN}$ = V _{CC} , T3 _{OUT} Loaded with d T2 _{OUT} Loaded with 2.5mA	Full	±5	-	-	V
ENHANCED AUTOMATIC POWER	DOWN (FORCEON = GN	ID, $\overline{FORCEOFF} = V_{CC}$)				r	1
Receiver Input Thresholds to INVALID High	See Figure 6		Full	-2.7	-	2.7	V
Receiver Input Thresholds to INVALID Low	See Figure 6		Full	-0.3	-	0.3	V
INVALID, READY Output Voltage Low	I _{OUT} = 1.6mA		Full	-	-	0.4	V
INVALID, READY Output Voltage High	I _{OUT} = -1.0mA		Full	V _{CC} -0.6	-	-	V
Receiver Positive or Negative Threshold to INVALID High Delay (t _{INVH})		25	-	1	-	μS	
Receiver Positive or Negative Threshold to INVALID Low Delay (t _{INVL})		25	-	30	-	μs	
Receiver or Transmitter Edge to Transmitters Enabled Delay (t _{WU})	Note 3	25	-	100	-	μS	
Receiver or Transmitter Edge to Transmitters Disabled Delay (^t AUTOPWDN)	Note 3	Full	15	30	60	sec	
TIMING CHARACTERISTICS				1 1		1	
Maximum Data Rate	$R_L = 3k\Omega$, One	C _L = 1000pF	Full	250	-	-	kbps
	Transmitter Switching	$V_{CC} = 3V$ to 4.5V, $C_{L} = 250$ pF	Full	1000	-	-	kbps
		$V_{CC} = 4.5V \text{ to } 5.5V,$ $C_{L} = 1000 \text{pF}$	Full	1000	-	-	kbps
Receiver Propagation Delay	Receiver Input to	^t PHL	25	-	0.15	-	μS
	Receiver Output, C _L = 150pF	t _{PLH}	25	-	0.15	-	μS
Receiver Output Enable Time	Normal Operation		25	-	200	-	ns
Receiver Output Disable Time	Normal Operation		25	-	200	-	ns
Transmitter Skew	t _{PHL} - t _{PLH} (Note 4)	25	-	25	-	ns	
Receiver Skew	t _{PHL} - t _{PLH} (Note 4)	25	-	50	-	ns	
Transition Region Slew Rate	$V_{CC} = 3.3V, R_L = 3k\Omega \text{ to}$ or -3V to 3V, $C_L = 150p$	25	24	-	150	V/µs	
ESD PERFORMANCE							
RS-232 Pins (T _{OUT} , R _{IN})	Human Body Model		25	-	±15	-	kV
	IEC1000-4-2 Contact Discharge			-	±8	-	kV
	IEC1000-4-2 Air Gap Discharge			-	>±8	-	kV
All Other Pins	Human Body Model		25	-	±2.5	-	kV

NOTES:

3. An "edge" is defined as a transition through the transmitter or receiver input thresholds.

4. Skews are measured at the receiver input switching points (1.4V).

Detailed Description

These ICL32XX interface ICs operate from a single +3V to +5.5V supply, guarantee a 1Mbps minimum data rate, require only four small external 0.1μ F capacitors, feature low power consumption, and meet all EIA RS-232C and V.28 specifications. The circuit is divided into three sections: The charge pump, the transmitters, and the receivers.

Charge-Pump

Intersil's new ICL32XX family utilizes regulated on-chip dual charge pumps as voltage doublers, and voltage inverters to generate ± 5.5 V transmitter supplies from a V_{CC} supply as low as 3.0V. This allows these devices to maintain RS-232 compliant output levels over the $\pm 10\%$ tolerance range of 3.3V powered systems. The efficient on-chip power supplies require only four small, external 0.1µF capacitors for the voltage doubler and inverter functions at V_{CC} = 3.3V. See the "Capacitor Selection" section, and Table 3 for capacitor recommendations for other operating conditions. The charge pumps operate discontinuously (i.e., they turn off as soon as the V+ and V- supplies are pumped up to the nominal values), resulting in significant power savings.

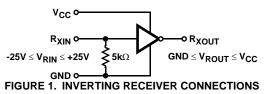
Transmitters

The transmitters are proprietary, low dropout, inverting drivers that translate TTL/CMOS inputs to EIA/TIA-232 output levels. Coupled with the on-chip \pm 5.5V supplies, these transmitters deliver true RS-232 levels over a wide range of single supply system voltages.

Transmitter outputs disable and assume a high impedance state when the device enters the powerdown mode (see Table 2). These outputs may be driven to \pm 12V when disabled.

All devices guarantee a 1Mbps data rate for full load conditions (3k Ω and 250pF), V_{CC} \geq 3.0V, with one transmitter operating at full speed. Under more typical conditions of V_{CC} \geq 3.3V, R_L = 3k Ω , and C_L = 250pF, one transmitter easily operates at 1.4Mbps. Transmitter skew is extremely low on these devices, and is specified at the receiver input trip points (1.4V), rather than the arbitrary 0V crossing point typical of other RS-232 families.

Transmitter inputs float if left unconnected, and may cause ${\sf I}_{CC}$ increases. Connect unused inputs to GND for the best performance.


Receivers

All the ICL32XX devices contain standard inverting receivers, but only the ICL3245 receivers can three-state, via the FORCEOFF control line. Additionally, the ICL3245 includes a noninverting (monitor) receiver (denoted by the R_{OUTB} label) that is always active, regardless of the state of any control lines. Both receiver types convert RS-232 signals to CMOS output levels and accept inputs up to $\pm 25V$ while presenting the required $3k\Omega$ to $7k\Omega$ input impedance (see Figure 1) even if the power is off (V_{CC} = 0V). The

7

receivers' Schmitt trigger input stage uses hysteresis to increase noise immunity and decrease errors due to slow input signal transitions.

The ICL3245 inverting receivers disable during forced (manual) powerdown, but not during automatic powerdown (see Table 2). Conversely, the monitor receiver remains active even during manual powerdown making it extremely useful for Ring Indicator monitoring. Standard receivers driving powered down peripherals must be disabled to prevent current flow through the peripheral's protection diodes (see Figures 2 and 3). This renders them useless for wake up functions, but the corresponding monitor receiver can be dedicated to this task as shown in Figure 3.

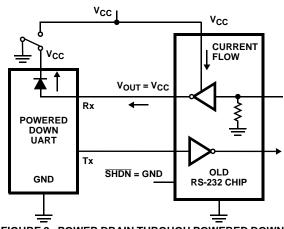
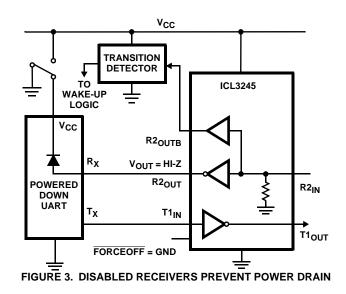



FIGURE 2. POWER DRAIN THROUGH POWERED DOWN PERIPHERAL

TABLE 2.	POWERDOWN LOGIC TRUTH TABLE

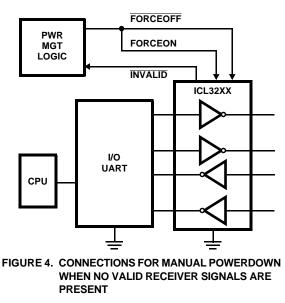
			TABLE 2. P	OWERDOW	N LOGIC TR	UTHTABLE		
RCVR OR XMTR EDGE WITHIN 30s?	FORCEOFF	FORCEON	TRANSMITTER OUTPUTS	RECEIVER OUTPUTS	(NOTE 5) ROUTB OUTPUTS	RS-232 LEVEL PRESENT AT RECEIVER INPUT?	INVALID OUTPUT	MODE OF OPERATION
ICL3225, ICL	.3227	1		1	1		1	
NO	Н	Н	Active	Active	N.A.	No	L	Normal Operation (Enhanced
NO	Н	Н	Active	Active	N.A.	Yes	Н	Auto Powerdown Disabled)
YES	Н	L	Active	Active	N.A.	No	L	Normal Operation (Enhanced
YES	Н	L	Active	Active	N.A.	Yes	Н	Auto Powerdown Enabled)
NO	Н	L	High-Z	Active	N.A.	No	L	Powerdown Due to Enhanced
NO	Н	L	High-Z	Active	N.A.	Yes	Н	Auto Powerdown Logic
Х	L	Х	High-Z	Active	N.A.	No	L	Manual Powerdown
Х	L	Х	High-Z	Active	N.A.	Yes	Н	
ICL322X - IN	VALID DRIVIN	IG FORCEO	N AND FORCEOF	F (EMULATE	S AUTOMA	FIC POWERD	OWN)	
Х	NOTE 6	NOTE 6	Active	Active	N.A.	Yes	Н	Normal Operation
Х	NOTE 6	NOTE 6	High-Z	Active	N.A.	No	L	Forced Auto Powerdown
CL3245								
NO	Н	Н	Active	Active	Active	No	L	Normal Operation (Enhanced
NO	Н	Н	Active	Active	Active	Yes	Н	Auto Powerdown Disabled)
YES	Н	L	Active	Active	Active	No	L	Normal Operation (Enhanced
YES	Н	L	Active	Active	Active	Yes	Н	Auto Powerdown Enabled)
NO	Н	L	High-Z	Active	Active	No	L	Powerdown Due to Enhanced
NO	Н	L	High-Z	Active	Active	Yes	Н	Auto Powerdown Logic
Х	L	Х	High-Z	High-Z	Active	No	L	Manual Powerdown
Х	L	Х	High-Z	High-Z	Active	Yes	Н	
CL3245 - IN	VALID DRIVIN		AND FORCEOF	F (EMULATE	S AUTOMAT		DWN)	
Х	NOTE 6	NOTE 6	Active	Active	Active	Yes	Н	Normal Operation
Х	NOTE 6	NOTE 6	High-Z	High-Z	Active	No	L	Forced Auto Powerdown

NOTES:

5. Applies only to the ICL3245.

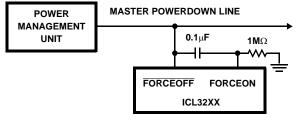
6. Input is connected to INVALID Output.

Powerdown Functionality


This 3V family of RS-232 interface devices requires a nominal supply current of 0.3mA during normal operation (not in powerdown mode). This is considerably less than the 5mA to 11mA current required of 5V RS-232 devices. The already low current requirement drops significantly when the device enters powerdown mode. In powerdown, supply current drops to 1 μ A, because the on-chip charge pump turns off (V+ collapses to V_{CC}, V- collapses to GND), and the transmitter outputs three-state. Inverting receiver outputs may or may not disable in powerdown; refer to Table 2 for details. This micro-power mode makes these devices ideal for battery powered and portable applications.

Software Controlled (Manual) Powerdown

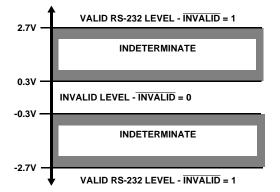
These three devices allow the user to force the IC into the low power, standby state, and utilize a two pin approach


where the FORCEON and FORCEOFF inputs determine the IC's mode. For always enabled operation, FORCEON and FORCEOFF are both strapped high. To switch between active and powerdown modes, under logic or software control, only the FORCEOFF input need be driven. The FORCEON state isn't critical, as FORCEOFF dominates over FORCEON. Nevertheless, if strictly manual control over powerdown is desired, the user must strap FORCEON high to disable the enhanced automatic powerdown circuitry. ICL3245 inverting (standard) receiver outputs also disable when the device is in powerdown, thereby eliminating the possible current path through a shutdown peripheral's input protection diode (see Figures 2 and 3).

Connecting FORCEOFF and FORCEON together disables the enhanced automatic powerdown feature, enabling them to function as a manual SHUTDOWN input (see Figure 4).

With any of the above control schemes, the time required to exit powerdown, and resume transmission is only 100μ s.

When using both manual and enhanced automatic powerdown (FORCEON = 0), the ICL32XX won't power up from manual powerdown until both FORCEOFF and FORCEON are driven high, or until a transition occurs on a receiver or transmitter input. Figure 5 illustrates a circuit for ensuring that the ICL32XX powers up as soon as FORCEOFF switches high. The rising edge of the Master Powerdown signal forces the device to power up, and the ICL32XX returns to enhanced automatic powerdown mode an RC time constant after this rising edge. The time constant isn't critical, because the ICL32XX remains powered up for 30 seconds after the FORCEON falling edge, even if there are no signal transitions. This gives slow-to-wake systems (e.g., a mouse) plenty of time to start transmitting, and as long as it starts transmitting within 30 seconds both systems remain enabled.



INVALID Output

The INVALID output always indicates (see Table 2) whether or not 30μ s have elapsed with invalid RS-232 signals (see Figures 6 and 8) persisting on all of the receiver inputs, giving the user an easy way to determine when the interface block should power down. Invalid receiver levels occur whenever the driving peripheral's outputs are shut off (powered down) or when the RS-232 interface cable is disconnected. In the case of a disconnected interface cable where all the receiver inputs are

9

floating (but pulled to GND by the internal receiver pull down resistors), the INVALID logic detects the invalid levels and drives the output low. The power management logic then uses this indicator to power down the interface block. Reconnecting the cable restores valid levels at the receiver inputs, INVALID switches high, and the power management logic wakes up the interface block. INVALID can also be used to indicate the DTR or RING INDICATOR signal, as long as the other receiver inputs are floating, or driven to GND (as in the case of a powered down driver).

Enhanced Automatic Powerdown

Even greater power savings is available by using these devices which feature an *enhanced automatic* powerdown function. When the enhanced powerdown logic determines that no transitions have occurred on any of the transmitter nor receiver inputs for 30 seconds, the charge pump and transmitters powerdown, thereby reducing supply current to 1 μ A. The ICL32XX automatically powers back up whenever it detects a transition on one of these inputs. This automatic powerdown feature provides additional system power savings without changes to the existing operating system.

Enhanced automatic powerdown operates when the FORCEON input is low, and the FORCEOFF input is high. Tying FORCEON high disables automatic powerdown, but manual powerdown is always available via the overriding FORCEOFF input. Table 2 summarizes the enhanced automatic powerdown functionality.

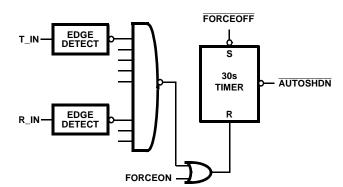


FIGURE 7. ENHANCED AUTOMATIC POWERDOWN LOGIC

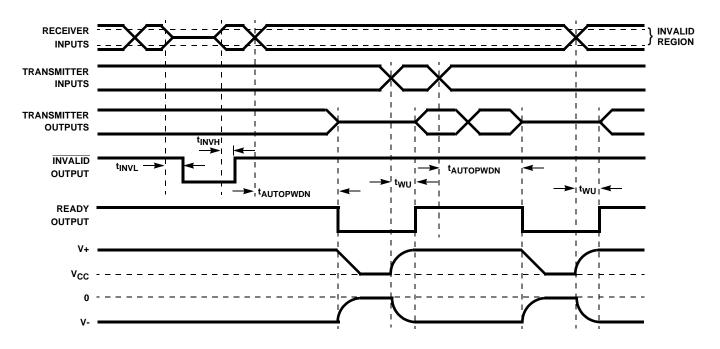


FIGURE 8. ENHANCED AUTOMATIC POWERDOWN, INVALID AND READY TIMING DIAGRAMS

Figure 7 illustrates the enhanced powerdown control logic. Note that once the ICL32XX enters powerdown (manually or automatically), the 30 second timer remains timed out (set), keeping the ICL32XX powered down until FORCEON transitions high, or until a transition occurs on a receiver or transmitter input.

The INVALID output signal switches low to indicate that invalid levels have persisted on all of the receiver inputs for more than 30µs (see Figure 8), but this has no direct effect on the state of the ICL32XX (see the next sections for methods of utilizing INVALID to power down the device). INVALID switches high 1µs after detecting a valid RS-232 level on a receiver input. INVALID operates in all modes (forced or automatic powerdown, or forced on), so it is also useful for systems employing manual powerdown circuitry.

The time to recover from automatic powerdown mode is typically $100 \mu s.$

Emulating Standard Automatic Powerdown

If enhanced automatic powerdown isn't desired, the user can implement the standard automatic powerdown feature (mimics the function on the ICL3221/ICL3223/ICL3243) by connecting the INVALID output to the FORCEON and FORCEOFF inputs, as shown in Figure 9. After 30µs of invalid receiver levels, INVALID switches low and drives the ICL32XX into a forced powerdown condition. INVALID switches high as soon as a receiver input senses a valid RS-232 level, forcing the ICL32XX to power on. See the "INVALID DRIVING FORCEON AND FORCEOFF" section of Table 2 for an operational summary. This operational mode is perfect for handheld devices that communicate with

another computer via a detachable cable. Detaching the cable allows the internal receiver pull-down resistors to pull the inputs to GND (an invalid RS-232 level), causing the 30μ s timer to time-out and drive the IC into powerdown. Reconnecting the cablerestores valid levels, causing the IC to power back up.

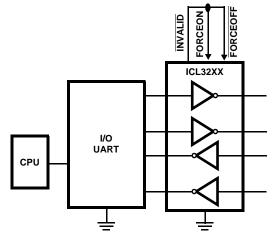


FIGURE 9. CONNECTIONS FOR AUTOMATIC POWERDOWN WHEN NO VALID RECEIVER SIGNALS ARE PRESENT

Hybrid Automatic Powerdown Options

For devices which communicate only through a detachable cable, connecting INVALID to FORCEOFF (with FORCEON = 0) may be a desirable configuration. While the cable is attached INVALID and FORCEOFF remain high, so the enhanced automatic powerdown logic powers down the RS-232 device whenever there is 30 seconds of inactivity on the

receiver and transmitter inputs. Detaching the cable allows the receiver inputs to drop to an invalid level (GND), so $\overline{\text{INVALID}}$ switches low and forces the RS-232 device to power down. The ICL32XX remains powered down until the cable is reconnected ($\overline{\text{INVALID}} = \overline{\text{FORCEOFF}} = 1$) and a transition occurs on a receiver or transmitter input (see Figure 7). For immediate power up when the cable is reattached, connect FORCEON to FORCEOFF through a network similar to that shown in Figure 5.

Ready Output (ICL3225 and ICL3227 Only)

The Ready output indicates that the ICL322X is ready to transmit. Ready switches low whenever the device enters powerdown, and switches back high during power-up when V- reaches -4V or lower.

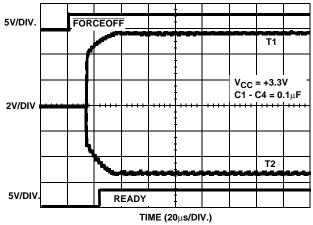
Capacitor Selection

The charge pumps require 0.1μ F capacitors for 3.3V operation. For other supply voltages refer to Table 3 for capacitor values. Do not use values smaller than those listed in Table 3. Increasing the capacitor values (by a factor of 2) reduces ripple on the transmitter outputs and slightly reduces power consumption. C₂, C₃, and C₄ can be increased without increasing C₁'s value, however, do not increase C₁ without also increasing C₂, C₃, and C₄ to maintain the proper ratios (C₁ to the other capacitors).

When using minimum required capacitor values, make sure that capacitor values do not degrade excessively with temperature. If in doubt, use capacitors with a larger nominal value. The capacitor's equivalent series resistance (ESR) usually rises at low temperatures and it influences the amount of ripple on V+ and V-.

V _{CC} (V)	C ₁ (μF)	C ₂ , C ₃ , C ₄ (μF)			
3.0 to 3.6	0.1	0.1			
4.5 to 5.5	0.047	0.33			
3.0 to 5.5	0.1	0.47			

Power Supply Decoupling


In most circumstances a 0.1 μ F bypass capacitor is adequate. In applications that are particularly sensitive to power supply noise, decouple V_{CC} to ground with a capacitor of the same value as the charge-pump capacitor C₁. Connect the bypass capacitor as close as possible to the IC.

Operation Down to 2.7V

ICL32XXE transmitter outputs meet RS-562 levels (\pm 3.7V), at full data rate, with V_{CC} as low as 2.7V. RS-562 levels typically ensure inter operability with RS-232 devices.

Transmitter Outputs when Exiting Powerdown

Figure 10 shows the response of two transmitter outputs when exiting powerdown mode. As they activate, the two transmitter outputs properly go to opposite RS-232 levels, with no glitching, ringing, nor undesirable transients. Each transmitter is loaded with $3k\Omega$ in parallel with 2500pF. Note that the transmitters enable only when the magnitude of the supplies exceed approximately 3V.

Mouse Driveability

The ICL3245 is specifically designed to power a serial mouse while operating from low voltage supplies. Figure 11 shows the transmitter output voltages under increasing load current. The on-chip switching regulator ensures the transmitters will supply at least \pm 5V during worst case conditions (15mA for paralleled V+ transmitters, 7.3mA for single V- transmitter).

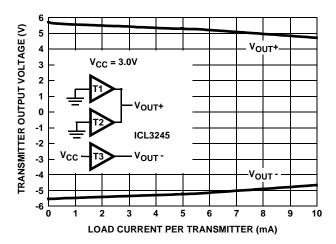


FIGURE 11. TRANSMITTER OUTPUT VOLTAGE vs LOAD CURRENT (PER TRANSMITTER, i.e., DOUBLE CURRENT AXIS FOR TOTAL V_{OUT+} CURRENT)

High Data Rates

The ICL32XX maintain the RS-232 ±5V minimum transmitter output voltages even at high data rates. Figure 12 details a transmitter loopback test circuit, and Figure 13 illustrates the loopback test result at 250kbps. For this test, all transmitters were simultaneously driving RS-232 loads in parallel with 1000pF, at 250kbps. Figure 14 shows the loopback results for a single transmitter driving 250pF and an RS-232 load at 1Mbps. The static transmitters were also loaded with an RS-232 receiver.

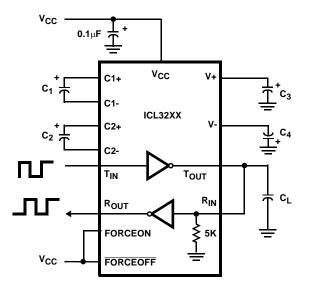
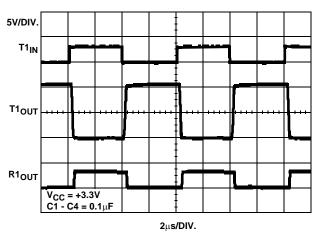



FIGURE 12. TRANSMITTER LOOPBACK TEST CIRCUIT

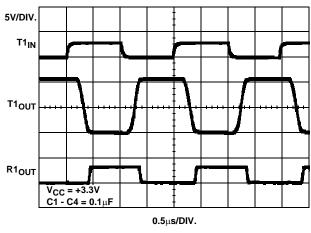


FIGURE 14. LOOPBACK TEST AT 1Mbps (C_L = 250pF)

Interconnection with 3V and 5V Logic

The ICL32XXE directly interfaces with 5V CMOS and TTL logic families. Nevertheless, with the ICL32XX at 3.3V, and the logic supply at 5V, AC, HC, and CD4000 outputs can drive ICL32XX inputs, but ICL32XX outputs do not reach the minimum V_{IH} for these logic families. See Table 4 for more information.

TABLE 4.	LOGIC FAMILY COMPATIBILITY WITH VARIOUS
	SUPPLY VOLTAGES

SYSTEM POWER-SUPPLY VOLTAGE (V)	V _{CC} SUPPLY VOLTAGE (V)	COMPATIBILITY				
3.3	3.3	Compatible with all CMOS families.				
5	5	Compatible with all TTL and CMOS logic families.				
5	3.3	Compatible with ACT and HCT CMOS, and with TTL. ICL32XX outputs are incompatible with AC, HC, and CD4000 CMOS inputs.				

Typical Performance Curves $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$

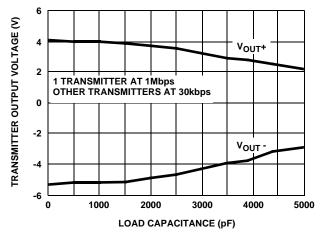


FIGURE 15. TRANSMITTER OUTPUT VOLTAGE vs LOAD CAPACITANCE

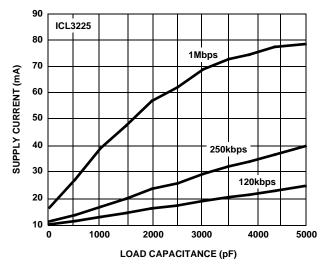


FIGURE 17. SUPPLY CURRENT vs LOAD CAPACITANCE WHEN TRANSMITTING DATA

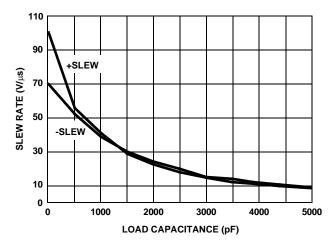


FIGURE 16. SLEW RATE vs LOAD CAPACITANCE

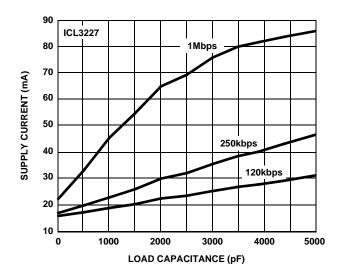
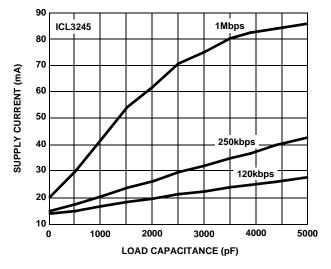



FIGURE 18. SUPPLY CURRENT vs LOAD CAPACITANCE WHEN TRANSMITTING DATA

Typical Performance Curves $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$ (Continued)

Die Characteristics

SUBSTRATE POTENTIAL (POWERED UP)

GND

TRANSISTOR COUNT

ICL3225: 937 ICL3227: 825 ICL3245: 1109

PROCESS

Si Gate CMOS

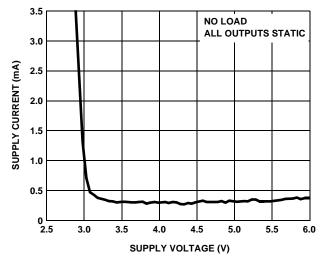
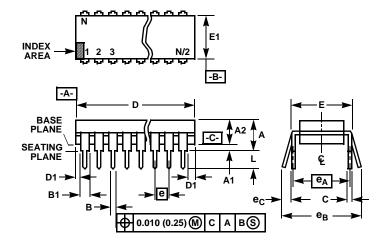
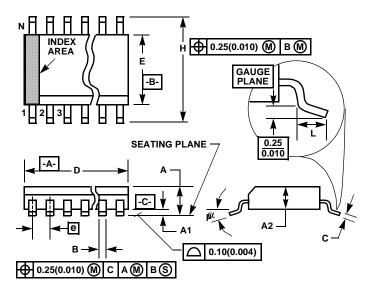



FIGURE 20. SUPPLY CURRENT vs SUPPLY VOLTAGE

Dual-In-Line Plastic Packages (PDIP)

NOTES:


- 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
- 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
- 5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
- 6. E and e_A are measured with the leads constrained to be perpendicular to datum -C-.
- 7. eB and eC are measured at the lead tips with the leads unconstrained. eC must be zero or greater.
- 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm).
- 9. N is the maximum number of terminal positions.
- 10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 0.045 inch (0.76 1.14mm).

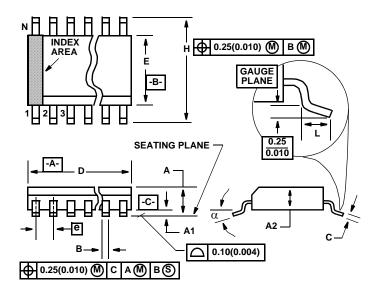
E20.3 (JEDEC MS-001-AD ISSUE D) 20 LEAD DUAL-IN-LINE PLASTIC PACKAGE

	INC	HES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
В	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.55	1.77	8
С	0.008	0.014	0.204	0.355	-
D	0.980	1.060	24.89	26.9	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
е	0.100	BSC	2.54	BSC	-
e _A	0.300 BSC		7.62	BSC	6
е _В	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
Ν	2	0	2	20	9

Rev. 0 12/93

Small Outline Plastic Packages (SSOP)

NOTES:


- 1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.20mm (0.0078 inch) per side.
- 4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.20mm (0.0078 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- Dimension "B" does not include dambar protrusion. Allowable dambar protrusion shall be 0.13mm (0.005 inch) total in excess of "B" dimension at maximum material condition.
- 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

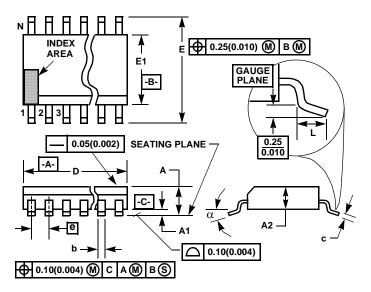
M16.209 (JEDEC MO-150-AC ISSUE B) 16 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE

	INC	HES	MILLIN	IETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	-	0.078	-	2.00	-
A1	0.002	-	0.05	-	-
A2	0.065	0.072	1.65	1.85	-
В	0.009	0.014	0.22	0.38	9
С	0.004	0.009	0.09	0.25	-
D	0.233	0.255	5.90	6.50	3
E	0.197	0.220	5.00	5.60	4
е	0.026	BSC	0.65	BSC	-
Н	0.292	0.322	7.40	8.20	-
L	0.022	0.037	0.55	0.95	6
Ν	16		1	6	7
α	0 ⁰	8 ⁰	0 ⁰	8 ⁰	-

Rev. 2 3/95

Shrink Small Outline Plastic Packages (SSOP)

NOTES:


- 1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.20mm (0.0078 inch) per side.
- 4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.20mm (0.0078 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- 9. Dimension "B" does not include dambar protrusion. Allowable dambar protrusion shall be 0.13mm (0.005 inch) total in excess of "B" dimension at maximum material condition.
- 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M20.209 (JEDEC MO-150-AE ISSUE B) 20 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE

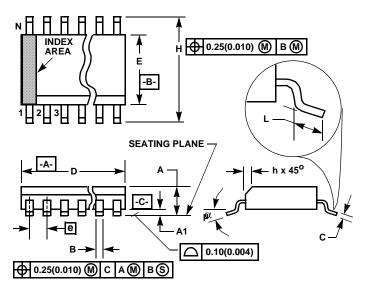
	INC	HES	MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	0.068	0.078	1.73	1.99	
A1	0.002	0.008'	0.05	0.21	
A2	0.066	0.070'	1.68	1.78	
В	0.010'	0.015	0.25	0.38	9
С	0.004	0.008	0.09	0.20'	
D	0.278	0.289	7.07	7.33	3
E	0.205	0.212	5.20'	5.38	4
е	0.026 BSC		0.65	BSC	
Н	0.301	0.311	7.65	7.90'	
L	0.025	0.037	0.63	0.95	6
N	20		2	0	7
α	0 deg.	8 deg.	0 deg.	8 deg.	

Rev. 3 11/02

Thin Shrink Small Outline Plastic Packages (TSSOP)

NOTES:

- 1. These package dimensions are within allowable dimensions of JEDEC MO-153-AE, Issue E.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- 4. Dimension "E1" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.15mm (0.006 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm (0.003 inch) total in excess of "b" dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm (0.0027 inch).
- 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. (Angles in degrees)


M28.173

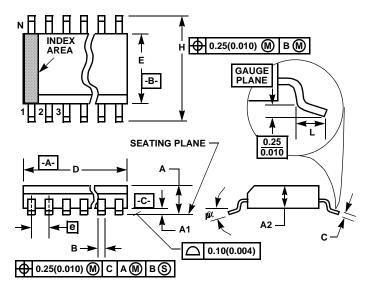
28 LEAD THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE

	INCHES MILLIMETERS				
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	-	0.047	-	1.20	-
A1	0.002	0.006	0.05	0.15	-
A2	0.031	0.051	0.80	1.05	-
b	0.0075	0.0118	0.19	0.30	9
С	0.0035	0.0079	0.09	0.20	-
D	0.378	0.386	9.60	9.80	3
E1	0.169	0.177	4.30	4.50	4
е	0.026	BSC	0.65	BSC	-
E	0.246	0.256	6.25	6.50	-
L	0.0177	0.0295	0.45	0.75	6
Ν	28		2	28	7
α	0 ⁰	8 ⁰	0 ⁰	8 ⁰	-

Rev. 0 6/98

Small Outline Plastic Packages (SOIC)

NOTES:


- 1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- 4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- 9. The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch)
- 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M28.3 (JEDEC MS-013-AE ISSUE C) 28 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

INC	HES	MILLIN	METERS	
MIN	MAX	MIN	MAX	NOTES
0.0926	0.1043	2.35	2.65	-
0.0040	0.0118	0.10	0.30	-
0.013	0.0200	0.33	0.51	9
0.0091	0.0125	0.23	0.32	-
0.6969	0.7125	17.70	18.10	3
0.2914	0.2992	7.40	7.60	4
0.05	BSC	1.27	' BSC	-
0.394	0.419	10.00	10.65	-
0.01	0.029	0.25	0.75	5
0.016	0.050	0.40	1.27	6
2	8	:	28	7
0 ⁰	8 ⁰	0 ⁰	8 ⁰	-
	MIN 0.0926 0.0040 0.013 0.0091 0.6969 0.2914 0.05 0.394 0.01 0.016 2	0.0926 0.1043 0.0040 0.0118 0.013 0.0200 0.0091 0.0125 0.6969 0.7125 0.2914 0.2992 0.394 0.419 0.01 0.029 0.016 0.050	MIN MAX MIN 0.0926 0.1043 2.35 0.0040 0.0118 0.10 0.013 0.0200 0.33 0.0091 0.0125 0.23 0.6969 0.7125 17.70 0.2914 0.2992 7.40 0.334 0.419 10.00 0.01 0.029 0.25 0.016 0.050 0.40	MIN MAX MIN MAX 0.0926 0.1043 2.35 2.65 0.0040 0.0118 0.10 0.30 0.013 0.0200 0.33 0.51 0.0091 0.0125 0.23 0.32 0.6969 0.7125 17.70 18.10 0.2914 0.2992 7.40 7.60 0.394 0.419 10.00 10.65 0.01 0.029 0.25 0.75 0.01 0.029 0.25 0.75 0.01 0.029 2.25 0.75 0.016 0.050 0.40 1.27

Rev. 0 12/93

Shrink Small Outline Plastic Packages (SSOP)

NOTES:

- 1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.20mm (0.0078 inch) per side.
- 4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.20mm (0.0078 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- Dimension "B" does not include dambar protrusion. Allowable dambar protrusion shall be 0.13mm (0.005 inch) total in excess of "B" dimension at maximum material condition.
- 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M28.209 (JEDEC MO-150-AH ISSUE B) 28 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE

	INC	INCHES		6 MILLIMETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	-	0.078	-	2.00	-
A1	0.002	-	0.05	-	-
A2	0.065	0.072	1.65	1.85	-
В	0.009	0.014	0.22	0.38	9
С	0.004	0.009	0.09	0.25	-
D	0.390	0.413	9.90	10.50	3
E	0.197	0.220	5.00	5.60	4
е	0.026	BSC	0.65	BSC	-
Н	0.292	0.322	7.40	8.20	-
L	0.022	0.037	0.55	0.95	6
N	28		2	28	7
α	0 ⁰	8 ⁰	0 ⁰	8 ⁰	-

Rev. 1 3/95

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

О компании

ООО "ТрейдЭлектроникс" - это оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов. Реализуемая нашей компанией продукция насчитывает более полумиллиона наименований.

Благодаря этому наша компания предлагает к поставке практически не ограниченный ассортимент компонентов как оптовыми, мелкооптовыми партиями, так и в розницу.

Наличие собственной эффективной системы логистики обеспечивает надежную поставку продукции по конкурентным ценам в точно указанные сроки.

Срок поставки со стоков в Европе и Америке – от 3 до 14 дней.

Срок поставки из Азии – от 10 дней.

Благодаря развитой сети поставщиков, помогаем в поиске и приобретении экзотичных или снятых с производства компонентов.

Предоставляем спец цены на элементы для создания инженерных сэмплов.

Упорный труд, качественный результат дают нам право быть уверенными в себе и надежными для наших клиентов.

Наша компания это:

- Гарантия качества поставляемой продукции
- Широкий ассортимент
- Минимальные сроки поставок
- Техническая поддержка
- Подбор комплектации
- Индивидуальный подход
- Гибкое ценообразование

Наша организация особенно сильна в поставках модулей, микросхем, пассивных компонентов, ксайленсах (XC), EPF, EPM и силовой электроники.

Большой выбор предлагаемой продукции, различные виды оплаты и доставки, позволят Вам сэкономить время и получить максимум выгоды от сотрудничества с нами!

Trade Electronics.ru гарантия бесперебойности производства и качества выпускаемой продукции

<u>Перечень производителей, продукцию которых мы поставляем</u> на российский рынок

	► ANALOG DEVICES	BOURNS	Coilcraft.
Élantec Semiconductor, Inc.	HARRIS	infineon	JRC
		nichicon	PHILIPS
	ATT SES-THOMSON	Sipex	TAIYD YUDEN
ТОКО	2	Winbond Destroyed Copy	Allegro
AIMEL.	BURR - BROWN	Z EX4R	HITACHI Inspire the Next
(intel)	Lattice	muRata Anostir in Bistonia	OKI
	SAMSUNG	SHARP	SONY
⊗TDK	TOSHIBA	×	
		CYPRESS	
	International		Semiconductor
GN Semiconductor	Kontek Kentondecker Corp.	SANYO	
<u>s</u>	TECCOR	TUNDRA.	E XILINX.
Amphenol	Bay Linear	CINILS LOGIC	DALLAS
FUĴĨTSU	DIDT.	intersil,	MIXIM
molex	NEC	Panasonic	RENESAS
SII Cale Instruments Inc.	SIEMENS		TEXAS INSTRUMENTS
	VISHAY		

С удовольствием будем прорабатывать для Вас поставки всех необходимых компонентов по текущим запросам для скорейшего выявления групп элементов, по которым сотрудничество именно с нашей компанией будет для Вас максимально выгодным!

С уважением,

Менеджер отдела продаж ООО

«Трейд Электроникс»

Шишлаков Евгений

8 (495)668-30-28 доб 169

manager28@tradeelectronics.ru

http://www.tradeelectronics.ru/