

MIC5246

150mA µCap CMOS LDO Regulator

Final Information

General Description

The MIC5246 is an efficient, precise CMOS voltage regulator optimized for low-noise applications. The MIC5246 offers better than 1% initial accuracy, extremely-low-dropout voltage (typically 150mV at 150mA) and constant ground current (typically 85 μ A)over load . The MIC5246 features an error flag that indicates an output fault condition such as overcurrent, thermal shutdown and dropout. The MIC5246 provides a very low noise output, ideal for RF applications where quiet voltage sources are required.

Designed specifically for hand-held and battery-powered devices, the MIC5246 provides a TTL-logic-compatible enable pin. When disabled, power consumption drops nearly to zero.

The MIC5246 also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in hand-held wireless devices.

Key features include current limit, thermal shutdown, a pushpull output for faster transient response, and an active clamp to speed up device turnoff. Available in the IttyBitty[™] SOT-23-5 package, the MIC5246 also offers a range of fixed output voltages.

Features

- Error flag indicates fault condition
- Ultralow dropout—100mV @ 100mA
- Load independent, ultralow ground current: 85μA
- 150mA output current
- Current limiting
- Thermal Shutdown
- Tight load and line regulation
- "Zero" off-mode current
- Stability with low-ESR capacitors
- Fast transient response
- TTL-Logic-controlled enable input

Applications

- · Cellular phones and pagers
- Cellular accessories
- Battery-powered equipment
- · Laptop, notebook, and palmtop computers
- PCMCIA V_{CC} and V_{PP} regulation/switching
- Consumer/personal electronics
- SMPS post-regulator/dc-to-dc modules
- High-efficiency linear power supplies

Ordering Information

Part Number	Marking	Voltage	Junction Temp. Range	Package
MIC5246-2.6BM5	LT26	2.6V	–40°C to +125°C	SOT-23-5
MIC5246-2.7BM5	LT27	2.7V	–40°C to +125°C	SOT-23-5
MIC5246-2.8BM5	LT28	2.8V	–40°C to +125°C	SOT-23-5
MIC5246-2.85BM5	LT2J	2.85V	–40°C to +125°C	SOT-23-5
MIC5246-3.0BM5	LT30	3.0V	–40°C to +125°C	SOT-23-5
MIC5246-3.3BM5	LT33	3.3V	–40°C to +125°C	SOT-23-5

Other voltages available. Contact Micrel for details.

Typical Application

Low-Noise Regulator Application

IttyBitty is a trademark of Micrel, Inc.

Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com

MIC5246-x.xBM5

Pin Description

Pin Number	Pin Name	Pin Function
1	IN	Supply Input
2	GND	Ground
3	EN	Enable/Shutdown (Input): CMOS compatible input. Logic high = enable; logic low = shutdown. Do not leave open.
4	FLG	Error Flag (Output): Open-drain output. Active low indicates an output undervoltage condition.
5	OUT	Regulator Output

Absolute Maximum Ratings (Note 1)

Supply Input Voltage (VIN)	0V to +7V
Enable Input Voltage (V _{EN})	0V to V _{IN}
Flag Output Voltage (V _{FLG})	0V to V _{IN}
Junction Temperature (T _J)	+150°C
Storage Temperature	–65°C to +150°C
Lead Temperature (soldering, 5 sec.)	260°C
ESD, Note 3	

Operating Ratings (Note 2)

Input Voltage (V _{IN})	+2.7V to +6V
Enable Input Voltage (V _{EN})	0V to V _{IN}
Flag Output Voltage (V _{FLG})	0V to V _{IN}
Junction Temperature (T _.)	40°C to +125°C
Thermal Resistance (θ_{JA})	

Electrical Characteristics

Symbol	Parameter	Conditions	Min	Typical	Max	Units
V _O	Output Voltage Accuracy	I _{OUT} = 0mA	-1 -2		1 2	% %
ΔV_{LNR}	Line Regulation	$V_{IN} = V_{OUT} + 0.1V$ to 6V	-0.3	0	0.3	%/V
ΔV_{LDR}	Load Regulation	I _{OUT} = 0.1mA to 150mA, Note 4		2	3	%
V _{IN} – V _{OUT}	Dropout Voltage, Note 5	I _{OUT} = 100μA		1.5	5	mV
		I _{OUT} = 50mA		50	85	mV
		I _{OUT} = 100mA		100	150	mV
		I _{OUT} = 150mA		150	200 250	mV mV
Q	Quiescent Current	$V_{EN} \le 0.4V$ (shutdown)		0.2	1	μA
GND	Ground Pin Current, Note 6	I _{OUT} = 0mA		85	150	μA
		I _{OUT} = 150mA		85	150	μA
PSRR	Power Supply Rejection	f = 120Hz, C _{OUT} = 10μF		50		dB
LIM	Current Limit	$V_{OUT} = 0V$	160	300		mA
Enable Inpu	t	·	•	•		
V _{IL}	Enable Input Logic-Low Voltage	$V_{IN} = 2.7V$ to 5.5V, regulator shutdown		0.8	0.4	V
V _{IH}	Enable Input Logic-High Voltage	$V_{IN} = 2.7V$ to 5.5V, regulator enabled	1.6	1		V
	Enable Input Current	$V_{IL} \le 0.4V$		0.01		μA
		$V_{IH} \ge 1.6V$		0.01		μA
	Shutdown Resistance Discharge			500		Ω
Thermal Pro	tection	·	•			
	Thermal Shutdown Temperature			150		°C
	Thermal Shutdown Hysteresis			10		°C
Error Flag	•	÷				-
V _{FLG}	Low Threshold High Threshold	% of V _{OUT} (Flag ON) % of V _{OUT} (Flag OFF)	90		96	% %
V _{OL}	Output Logic-Low Voltage	$I_{L} = 100 \mu A$, fault condition		0.02	0.4	V
FL	Flag Leakage Current	flag off, V _{FLG} = 6V		0.01		μA
Note 2. The Note 3. Devi Note 4. Reg		e its operating rating.				load

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. For outputs below 2.7V, dropout voltage is the input-to-output voltage differential with the minimum input voltage 2.7V. Minimum input operating voltage is 2.7V. Note 5.

Note 6. Ground pin current is the regulator quiescent current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

The error flag is a function of the output voltage being 5% low and the detection of one of the following: overcurrent, overtemperature or Note 7. dropout. See "Applications Information" section for additional information.

Power Supply Rejection Ratio

Power Supply Rejection Ratio

Ground Pin Current

Dropout Characteristics

60 5 (B) 30 30 30 20 1(I_{LOAD}= 50mA 1×10^T 1×10² 1x10 1×10 ž X FREQUENCY (Hz)

Power Supply Rejection Ratio

Ground Pin Current

100

8

60

40

20

Ъ

GROUND CURRENT (µA)

Power Supply Rejection Ratio

Ground Pin Current

Ground Pin Current

Dropout Voltage

3

2 3 VOLTAGE IN (V)

I_{LOAD} = 100μA

4

5

Dropout Voltage

Typical Characteristics

Block Diagrams

Applications Information

Enable/Shutdown

The MIC5246 comes with an active-high enable pin that allows the regulator to be disabled. Forcing the enable pin low disables the regulator and sends it into a "zero" off-modecurrent state. In this state, current consumed by the regulator goes nearly to zero. Forcing the enable pin high enables the output voltage. This part is CMOS and the enable pin cannot be left floating; a floating enable pin may cause an indeterminate state on the output.

Input Capacitor

An input capacitor is not required for stability. A 1μ F input capacitor is recommended when the bulk ac supply capacitance is more than 10 inches away from the device, or when the supply is a battery.

Output Capacitor

The MIC5246 requires an output capacitor for stability. The design requires 1μ F or greater on the output to maintain stability. The capacitor can be a low-ESR ceramic chip capacitor. The MIC5246 has been designed to work specifically with the low-cost, small chip capacitors. Tantalum capacitors can also be used for improved capacitance over temperature. The value of the capacitor can be increased without bound.

X7R dielectric ceramic capacitors are recommended because of their temperature performance. X7R-type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much 50% and 60% respectively over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than an X7R ceramic or a tantalum capacitor to ensure the same minimum capacitance value over the operating temperature range. Tantalum capacitors have a very stable dielectric (10% over their operating temperature range) and can also be used with this device.

Error Flag

The error flag output is an active-low, open-drain output that drives low when a fault condition AND an undervoltage detection occurs. Internal circuitry intelligently monitors overcurrent, overtemperature and dropout conditions and ORs these outputs together to indicate some fault condition. The output of that OR gate is ANDed with an output voltage monitor that detects an undervoltage condition. That output drives the open-drain transistor to indicate a fault. This prevents chattering or inadvertent triggering of the error flag. The error flag must be pulled up using a resistor from the flag pin to either the input or the output.

Error Flag Circuit

The error flag circuit was designed essentially to work with a capacitor to ground to act as a power-on reset generator, signaling a power-good situation once the regulated voltage was up and/or out of a fault condition. This capacitor delays the error signal from pulling high, allowing the downstream circuits time to stabilize. When the error flag is pulled up to the

input without using a pull-down capacitor, then there can be a glitch on the error flag upon start up of the device. This is due to the response time of the error flag circuit as the device starts up. When the device comes out of the zero off mode current state, all the various nodes of the circuit power up before the device begins supplying full current to the output capacitor. The error flag drives low immediately and then releases after a few microseconds. The intelligent circuit that triggers an error detects the output going into current limit AND the output being low while charging the output capacitor. The error output then pulls low for the duration of the turn-on time. This glitch is filtered by putting a capacitor from the error flag to ground. The glitch does not occur if the error flag pulled up to the output.

Transient Response

The MIC5246 implements a unique output stage to dramatically improve transient response recovery time. The output is a totem-pole configuration with a P-channel MOSFET pass device and an N-channel MOSFET clamp. The N-channel clamp is a significantly smaller device that prevents the output voltage from overshooting when a heavy load is removed. This feature helps to speed up the transient response by significantly decreasing transient response recovery time during the transition from heavy load (100mA) to light load (85 μ A).

Active Shutdown

The MIC5246 also features an active shutdown clamp, which is an N-channel MOSFET that turns on when the device is disabled. This allows the output capacitor and load to discharge, de-energizing the load.

Thermal Considerations

The MIC5246 is designed to provide 150mA of continuous current in a very small package. Maximum power dissipation can be calculated based on the output current and the voltage drop across the part. To determine the maximum power dissipation of the package, use the junction-to-ambient thermal resistance of the device and the following basic equation:

$$P_{D(max)} = \left(\frac{T_{J(max)} - T_{A}}{\theta_{JA}}\right)$$

 $T_{J(max)}$ is the maximum junction temperature of the die, 125°C, and T_A is the ambient operating temperature. θ_{JA} is layout dependent; Table 1 shows examples of junction-to-ambient thermal resistance for the MIC5246.

Package	$\boldsymbol{\theta}_{\text{JA}}$ Recommended Minimum Footprint	θ _{JA} 1" Square Copper Clad	θ ^η	
SOT-23-5 (M5)	235°C/W	185°C/W	145°C/W	
Table 1 SOT-22-5 Thermal Resistance				

Table 1. SOT-23-5 Thermal Resistance

The actual power dissipation of the regulator circuit can be determined using the equation:

$$\mathsf{P}_\mathsf{D} = (\mathsf{V}_\mathsf{IN} - \mathsf{V}_\mathsf{OUT}) \mathsf{I}_\mathsf{OUT} + \mathsf{V}_\mathsf{IN} \mathsf{I}_\mathsf{GND}$$

Substituting $P_{D(max)}$ for P_D and solving for the operating conditions that are critical to the application will give the maximum operating conditions for the regulator circuit. For example, when operating the MIC5246-3.0BM5 at 50°C with a minimum footprint layout, the maximum input voltage for a set output current can be determined as follows:

$$\mathsf{P}_{\mathsf{D}(\mathsf{max})} = \left(\frac{125^{\circ}\mathsf{C} - 50^{\circ}\mathsf{C}}{235^{\circ}\mathsf{C}/\mathsf{W}}\right)$$

 $P_{D(max)} = 315 mW$

The junction-to-ambient thermal resistance for the minimum footprint is 235° C/W, from Table 1. The maximum power dissipation must not be exceeded for proper operation. Using the output voltage of 3.0V and an output current of 150mA, the maximum input voltage can be determined. Because this device is CMOS and the ground current is typically 100µA over the load range, the power dissipation contributed by the ground current is <1% and can be ignored for this calculation.

$$315mW = (V_{IN} - 3.0V) 150mA$$

 $315mW = V_{IN} \cdot 150mA - 450mW$
 $810mW = V_{IN} \cdot 150mA$

$$V_{IN(max)} = 5.4V$$

Therefore, a 3.0V application at 150mA of output current can accept a maximum input voltage of 5.4V in a SOT-23-5 package. For a full discussion of heat sinking and thermal effects on voltage regulators, refer to the Regulator Thermals section of Micrel's *Designing with Low-Dropout Voltage Regulators* handbook.

Fixed Regulator Applications

Figure 1. Low-Noise Fixed Voltage Application

Figure 1 shows a standard low-noise configuration with a $47k\Omega$ pull-up resistor from the error flag to the input voltage and a pull-down capacitor to ground for the purpose of fault indication.

Dual-Supply Operation

When used in dual supply systems where the regulator load is returned to a negative supply, the output voltage must be diode clamped to ground.

Package Information

MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

© 2000 Micrel Incorporated

О компании

ООО "ТрейдЭлектроникс" - это оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов. Реализуемая нашей компанией продукция насчитывает более полумиллиона наименований.

Благодаря этому наша компания предлагает к поставке практически не ограниченный ассортимент компонентов как оптовыми, мелкооптовыми партиями, так и в розницу.

Наличие собственной эффективной системы логистики обеспечивает надежную поставку продукции по конкурентным ценам в точно указанные сроки.

Срок поставки со стоков в Европе и Америке – от 3 до 14 дней.

Срок поставки из Азии – от 10 дней.

Благодаря развитой сети поставщиков, помогаем в поиске и приобретении экзотичных или снятых с производства компонентов.

Предоставляем спец цены на элементы для создания инженерных сэмплов.

Упорный труд, качественный результат дают нам право быть уверенными в себе и надежными для наших клиентов.

Наша компания это:

- Гарантия качества поставляемой продукции
- Широкий ассортимент
- Минимальные сроки поставок
- Техническая поддержка
- Подбор комплектации
- Индивидуальный подход
- Гибкое ценообразование

Наша организация особенно сильна в поставках модулей, микросхем, пассивных компонентов, ксайленсах (XC), EPF, EPM и силовой электроники.

Большой выбор предлагаемой продукции, различные виды оплаты и доставки, позволят Вам сэкономить время и получить максимум выгоды от сотрудничества с нами!

Trade Electronics.ru гарантия бесперебойности производства и качества выпускаемой продукции

<u>Перечень производителей, продукцию которых мы поставляем</u> на российский рынок

	► ANALOG DEVICES	BOURNS	Coilcraft.
Élantec Semiconductor, Inc.	HARRIS	infineon	JRC
		nichicon	PHILIPS
	ATT SES-THOMSON	Sipex	TAIYD YUDEN
ТОКО	2	Winbond Destroyed Copy	Allegro
AIMEL.	BURR - BROWN	Z EX4R	HITACHI Inspire the Next
(intel)	Lattice	muRata Anostir in Bistonia	OKI
	SAMSUNG	SHARP	SONY
⊗TDK	TOSHIBA	×	
	200	CYPRESS	
	International		Semiconductor
GN Semiconductor	Kontek Kentondecker Corp.	SANYO	
<u>s</u>	TECCOR	TUNDRA.	E XILINX.
Amphenol	Bay Linear	CINILS LOGIC	DALLAS
FUĴĨTSU	DIDT	intersil,	MIXIM
molex	NEC	Panasonic	RENESAS
SII Cale Instrumenta Inc.	SIEMENS		TEXAS INSTRUMENTS
	VISHAY		

С удовольствием будем прорабатывать для Вас поставки всех необходимых компонентов по текущим запросам для скорейшего выявления групп элементов, по которым сотрудничество именно с нашей компанией будет для Вас максимально выгодным!

С уважением,

Менеджер отдела продаж ООО

«Трейд Электроникс»

Шишлаков Евгений

8 (495)668-30-28 доб 169

manager28@tradeelectronics.ru

http://www.tradeelectronics.ru/