

SINGLE-CHIP, VOICE RECORD / PLAYBACK DEVICES 10- AND 12-SECOND DURATION

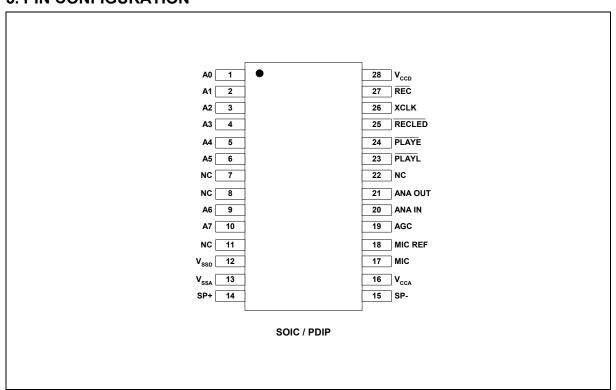
1. GENERAL DESCRIPTION

Winbond's ChipCorder[®] ISD1100 series provide high-quality, single-chip, Record/Playback solutions to 10- and 12-second messaging applications. The CMOS devices include an on-chip oscillator, microphone preamplifier, automatic gain control, anti-aliasing filter, smoothing filter, and speaker amplifier. A minimum Record/Playback subsystem can be configured with a microphone, a speaker, several passive components, two push buttons and a power source. Recordings are stored into on-chip nonvolatile memory cells, providing zero-power message storage. This unique, single-chip solution is made possible through Winbond's patented Multi-Level Storage (MLS) technology. Voice and audio signals are stored directly into memory in their natural form, providing high-quality, solid-state voice reproduction.

2. FEATURES

- · Single 5 volt power supply
- Single-Chip with 10 and 12 seconds duration
- Easy-to-use single-chip, voice record/playback solution
- · Push-button interface
 - Playback can be edge- or level-activated
- Fully addressable to handle multiple messages
- Automatic power-down
 - o Enters into standby mode automatically following a record or playback operation
 - 0.5 μA Standby current (typical)
- · Zero-power message storage
 - Eliminates battery backup circuits
- · High-quality, natural voice/audio reproduction
- · On-chip oscillator
- · No programmer or development system needed
- 100,000 record cycles (typical)
- 100-year message retention (typical)
- Available in die, PDIP, and SOIC
- Temperature: Commercial Packaged unit : 0°C to 70°C, Die : 0°C to 50°C

3. BLOCK DIAGRAM



4	TΔ	RI	F	OF	CC)N	TFN	NTS
-		ιоι		v.	-	JIN		v i o

1. GENERAL DESCRIPTION	2
2. FEATURES	2
3. BLOCK DIAGRAM	3
4. TABLE OF CONTENTS	4
5. PIN CONFIGURATION	5
6. PIN DESCRIPTION	6
7. FUNCTIONAL DESCRIPTION	10
7.1. Detailed Description	10
8. TIMING DIAGRAMS	12
9. ABSOLUTE MAXIMUM RATINGS ^[1]	13
9.1 Operating Conditions	14
10. ELECTRICAL CHARACTERISTICS	15
10.1. Parameters For Packaged Parts	15
10.1.1. Typical Parameter Variation with Voltage and Temperature	18
10.2. Parameters For DIE	19
10.2.1. Typical Parameter Variation with Voltage and Temperature	22
11. TYPICAL APPLICATION CIRCUIT	23
12. PACKAGE DRAWING AND DIMENSIONS	26
12.1. 28-Lead 300mil Plastic Small Outline IC (SOIC)	26
12.2. 28-Lead 600mil Plastic Dual Inline Package (PDIP)	27
12.3. Die Physical Layout ^[1]	28
13. ORDERING INFORMATION	30
14 VERSION HISTORY	31

5. PIN CONFIGURATION

6. PIN DESCRIPTION

PIN NAME	ME PIN NO. FUNCTION					
A0-A7	1-6, 9, 10	Address Inputs: The address inputs have two functions, depending on the level of the two Most Significant Bits (MSB) of the address (A6 and A7).				
		If either or both of the two MSBs are LOW, all inputs are interpreted as address bits and are used as the start address for the current record or playback cycle. The address pins are inputs only and do not output internal address information as the operation progresses. Address inputs are latched by the				
		falling edge of PLAYE, PLAYL, or REC.				
		If both A6 & A7 are HIGH, then the device is in a special operational mode for looping. Please refer to looping capability section for details.				
		A0, A1, A2, A3, A4 and A5 have internal pull-down resistors, while A6 and A7 have internal pull-up resistors. They can be floating if not used. Each of these internal pull-up or pull-down devices have a value of 50 K Ω to 100 K Ω .				
V_{SSA}, V_{SSD}	12, 13	Ground : Similar to V_{CCA} and V_{CCD} , separate analog and digital ground rails provide independent analog and digital ground buses internally to minimize noise. These pins should be tied together as close as possible to the device.				
SP+, SP-	14, 15	Speaker Outputs: The differential SP+ and SP- pins are designed to drive a 16Ω speaker directly. Conversely, with single-ended connection, a coupling capacitor is needed between the SP pin and the speaker. Besides, the output power is about a quarter of that from differential output. The speaker outputs are in high-impedance state during recording and at V_{SSA} during power down.				
V_{CCA}, V_{CCD}	16, 28	Supply Voltages: Separate analog and digital powers provide power to internal analog and digital circuits respectively to minimize internal noises. These power buses are brought out to separate pads and should be tied together as close to the supply source as possible. It is important that the power supplies are decoupled as close to the device as possible.				
MIC	17	Microphone : The microphone input transfers its signal to the on-chip preamplifier. An on-chip Automatic Gain Control (AGC) circuit controls the gain of this preamplifier from -15 to 24dB. An external microphone should be AC coupled to this pin via a series capacitor. The capacitor value, together with the internal 10 KΩ resistance on this pin, determines the low-frequency cutoff for the device passband. See Winbond's Application Information for additional information on low-frequency cutoff calculation.				

DININAME	BINING	FUNCTION
MIC REF	PIN NO. 18	FUNCTION Microphone Reference: The MIC REF input is the inverting input to the microphone preamplifier. This provides a noise-
		canceling or common-mode rejection input to the device when connected to a differential microphone.
AGC	19	Automatic Gain Control (AGC): The AGC input dynamically adjusts the gain of the preamplifier to compensate for the wide range of microphone input levels. The AGC allows the full range of sound, from whispers to loud sounds, to be recorded with minimal distortion. The "attack" time is determined by the time constant of a 5 K Ω internal resistance and an external capacitor (C6 of Figure 5 in Section 11) connected from the AGC pin to $V_{\rm SSA}$. The "release" time is determined by the time constant of an external resistor (R5) and an external capacitor (C6) connected in parallel between the AGC pin and $V_{\rm SSA}$ pin. Nominal values of 470 K Ω and 4.7 μF give satisfactory results in most cases. Tying this to ground gives maximum gain, while tying it to $V_{\rm CCA}$ gives minimum gain for the AGC amplifier.
ANA IN	20	Analog Input: The ANA IN transfers an input signal to the chip for recording. For microphone usage, this ANA IN pin should be connected via an external capacitor to the ANA OUT pin. This capacitor value, together with the 3 K Ω input impedance of ANA IN, is selected to give additional cutoff at the low-frequency end of the voice passband. If the desired input is derived from a source other than a microphone, the signal can be capacitively coupled into the ANA IN pin directly.
ANA OUT	21	Analog Output : This pin provides the preamplifier output to the user. The voltage gain of the preamplifier is determined by the voltage level at the AGC pin.
PLAYL [2][3]	23	Playback, Level-Activated: When this input signal is held LOW, a playback cycle is initiated, and playback continues
		until PLAYL is pulled HIGH, or an EOM marker is detected. The device automatically powers down and enters into standby mode upon completion of a playback cycle. This pin has an internal pull-up resistor.
PLAYE [2][3]	24	Playback, Edge-Activated: When a LOW-going transition is
		detected on this pin, a playback cycle begins. Taking PLAYE HIGH during a playback cycle will not terminate the current cycle. Playback continues until an EOM is encountered. Upon completion of a playback cycle, the device automatically powers down and enters into standby mode. This pin has an internal pull-up device.

PIN NAME	PIN NO.		FUNCTION					
RECLED	25	Record LED: The RECLED output is LOW during a record cycle. It can be used to drive an LED to indicate a record cycle is in progress. In addition, RECLED pulses LOW momentarily when an end-of-message is encountered in a playback operation.						
XCLK	26	External Clock : The external clock input has an internal pull-down resistor. The ISD1100 is configured at the factory with an internal sampling clock frequency that guarantees its minimum nominal record/playback time. For instance, an ISD1110 operating within specification will be observed to always have a minimum of 10 seconds of recording time. The sampling frequency is then maintained to a variation of ± 2.25 percent over the commercial temperature and operating voltage ranges while still maintaining the minimum duration specified. As a result some devices will have a few percent more than nominal recording time. If greater precision is required, the device can be clocked through the XCLK pin as follows:						
		_	EXTERNA	L CLOCK SAM	PLE RATES			
			Part Number	Sample Rate	Required Clock			
			ISD1110	6.4 kHz	819.2 kHz			
		ISD1112 5.3 kHz 682.7 kHz						
		These recommended clock rates should not be varied because the anti-aliasing and smoothing filters are fixed, and aliasing problems can occur if the sample rate differs from the one recommended. The duty cycle on the input clock is not critical, as the clock is immediately divided by two. If the XCLK is not used, this pin must be grounded. Please see Application Information for the ISD1100 series for more details on external clocking.						

PIN NAME	PIN NO.	FUNCTION			
REC [1][3]	27	Record: The REC input is an active-LOW signal. The device			
		records whenever $\overline{\text{REC}}$ is LOW. This signal must remain LOW for the duration of the recording. A record cycle is			
		completed when REC is pulled HIGH or the memory space is filled up.			
		REC takes precedence over either playback (PLAYE or			
		PLAYL) signal. If REC is pulled LOW during a playback cycle, the playback immediately ceases and recording begins.			
		An end-of-message (EOM) marker is internally recorded, enabling a subsequent playback cycle to terminate appropriately. The device automatically powers down into			
		standby mode when REC goes HIGH. This pin has an internal pull-up resistor.			
NC	11	NC: No connect			

Notes:

The REC signal is debounced for 50 ms on the rising edge to prevent a false retriggering from a push-button switch.

During playback, if either PLAYE or PLAYL is held LOW during EOM or OVF, the device will still enter into standby mode and the internal oscillator and timing generator will stop. However, the rising edge of PLAYE and PLAYL are not debounced and any subsequent falling edge (particularly switch bounce) present on the input pins will initiate another playback.

 $^{^{\}text{[3]}}$ $\overline{\text{REC}}$, $\overline{\text{PLAYL}}$ and $\overline{\text{PLAYE}}$ have internal pull-ups to $V_{\text{CC}}.$ Holding on these pins LOW wil increase standby current consumption.

7. FUNCTIONAL DESCRIPTION

7.1. DETAILED DESCRIPTION

Speech/Sound Quality

Winbond's patented ChipCorder[®] technology provides natural audio record and playback. The ISD1100 series include devices of 5.3 kHz and 6.4 kHz sampling frequencies, allowing the user a choice of speech quality options. The input voice signals are stored directly into non-volatile EEPROM cells and are reproduced without the synthetic effect often heard with digital solid-state speech solutions. A complete sample is stored in a single cell, minimizing the memory necessary to store a recording of a given duration.

Duration

The ISD1100 series offer single-chip solutions of 10 and 12 seconds duration.

 Part Number
 Duration (Seconds)
 Input Sample Rate (kHz)
 Typical Filter Pass Band* (kHz)

 ISD1110
 10
 6.4
 2.6

 ISD1112
 12
 5.3
 2.2

TABLE 1: ISD1100 SERIES PRODUCT SUMMARY

EEPROM Storage

One of the benefits of Winbond's ChipCorder[®] technology is the use of on-chip non-volatile memory, providing zero-power message storage. The message is retained for up to 100 years typically without power. In addition, the device can be re-recorded typically over 100,000 times.

Basic Operation

The ISD1100 ChipCorder® series are controlled by a single signal, REC, or one of two playback control signals, PLAYE (edge-activated playback), and PLAYE (level-activated playback). The ISD1100 series parts are configured for simplicity of design in a single/multiple-message application. Using the address lines will allow multiple message applications.

Automatic Power-Down Mode

At the end of a playback or record operation, the ISD1100 series automatically enters into a standby mode, with typically 0.5 μ A current. During a playback cycle, the device powers down automatically at the end of the message. During a record cycle, the device powers down immediately after $\overline{\text{REC}}$ is released HIGH.

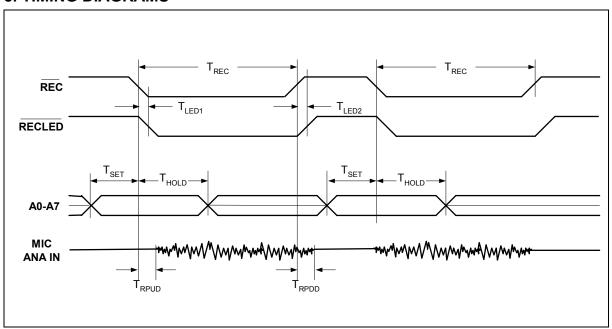
^{* 3}dB roll-off-point....

Addressing

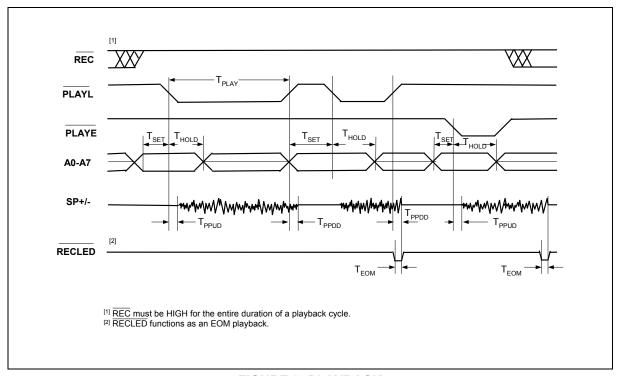
In addition to single-message application, the ISD1100 series provides a full addressing capability for multiple message application.

The memory array of ISD1100 series has 80 distinct addressable rows, providing the below resolutions per row. See Application Information for address tables of ISD1100 series.

TABLE 2: DEVICE PLAYBACK/RECORD DURATIONS


Part Number	Minimum Duration (per ROW)
ISD1110	125 msec
ISD1112	150 msec

Looping Capability


The ISD1100 series device has a built-in looping function enabling it to continuously repeat a single message. This mode is accomplished by taking A3, A6 and A7 pins HIGH simultaneously to continuously loop from the end of the message to the beginning of the message. Looping is initiated by a negative transition on PLAYE pin with A3, A6 and A7 held HIGH, then PLAYE is brought back to HIGH. Looping will continue indefinitely with all three control pins (PLAYE, PLAYL, REC) remaining HIGH, until PLAYL is pulsed to LOW, which ends the looping.

8. TIMING DIAGRAMS

FIGURE 1: RECORD

FIGURE 2: PLAYBACK

9. ABSOLUTE MAXIMUM RATINGS [1]

TABLE 3: ABSOLUTE MAXIMUM RATINGS (PACKAGED PARTS)

CONDITIONS	VALUES
Junction temperature	150°C
Storage temperature range	-65°C to +150°C
Voltage applied to any pin	$(V_{SS} - 0.3V)$ to $(V_{CC} + 0.3V)$
Voltage applied to any pins (Input current limited to ±20 mA)	$(V_{SS} - 1.0V)$ to $(V_{CC} + 1.0V)$
Lead temperature (Soldering – 10sec)	300°C
V _{CC} – V _{SS}	-0.3V to +7V

TABLE 4: ABSOLUTE MAXIMUM RATINGS (DIE)

CONDITIONS	VALUES
Junction temperature	150°C
Storage temperature range	-65°C to +150°C
Voltage applied to any pad	$(V_{SS} - 0.3V)$ to $(V_{CC} + 0.3V)$
Voltage applied to any pad (Input current limited to ±20mA)	$(V_{SS} - 1.0V)$ to $(V_{CC} + 1.0V)$
V _{CC} – V _{SS}	-0.3V to +7V

^[1] Stresses above those listed may cause permanent damage to the device. Exposure to the absolute maximum ratings may affect device reliability and performance. Functional operation is not implied at these conditions.

9.1 OPERATING CONDITIONS

TABLE 5: OPERATING CONDITIONS (PACKAGED PARTS)

CONDITIONS	VALUES
Commercial operating temperature range (Case temperature)	0°C to +70°C
Supply voltage (V _{CC}) [1]	+4.5V to +5.5V
Ground voltage (V _{SS}) [2]	0V

TABLE 6: OPERATING CONDITIONS (DIE)

CONDITIONS	VALUES
Commercial operating temperature range	0°C to +50°C
Supply voltage (V _{CC}) [1]	+4.5V to +6.5V
Ground voltage (V _{SS}) [2]	0V

$$^{[1]}V_{CC} = V_{CCA} = V_{CCD}$$

 $^{^{[2]}}$ V_{SS} = V_{SSA} = V_{SSD}

10. ELECTRICAL CHARACTERISTICS

10.1. PARAMETERS FOR PACKAGED PARTS

TABLE 7: DC PARAMETERS

PARAMETERS	SYMBOLS	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS
Input Low Voltage	V _{IL}			0.8	V	
Input High Voltage	V _{IH}	2.4			V	
Output Low Voltage	V _{OL}			0.4	V	I _{OL} = 4.0 mA
Output High Voltage	V _{OH}	2.4			V	I _{OH} = -1.6 μA
V _{CC} Current (Operating)	I _{cc}		15	30	mA	$V_{CC} = 5.5V^{[3]},$ $R_{EXT} = \infty$
V _{CC} Current (Standby)	I _{SB}		0.5	2	μA	[3] [4]
Input Leakage Current	I _{IL}			±1	μA	
Input Current LOW w/ Pull Up	I _{ILPU}			-130	μΑ	Force V _{SS} ^[5]
Input Current HIGH w/ Pull Down	I _{ILPD}			130	μΑ	Force V _{CC} [6]
Output Load Impedance	R _{EXT}	16			Ω	Speaker Load
Preamp Input Resistance	R _{MIC}		10		ΚΩ	Pins 17, 18
ANA IN Input Resistance	R _{ANA IN}		3		ΚΩ	
Preamp Gain 1	A _{PRE1}		24		dB	AGC = 0.0V
Preamp Gain 2	A _{PRE2}		-45	-15	dB	AGC = 2.5V
ANA IN to SP+/- Gain	A _{ARP}		22		dB	
AGC Output Resistance	R _{AGC}		5		ΚΩ	
Preamp Out Source	I _{PREH}		-2		mA	@ V _{OUT} = 1.0V
Preamp In Sink	I _{PREL}		0.5		mA	@ V _{OUT} = 2.0V

Notes:

- [1] Typical values @ T_A = 25° and V_{CC} = 5.0V.
- [2] All Min/Max limits are guaranteed by Winbond via electrical testing or characterization. Not all specifications are 100 percent tested.
- [3] V_{CCA} and V_{CCD} connected together.
- [4] REC, PLAYL, and PLAYE must be at V_{CCD} .
- [5] XCLK pin only.
- [6] A0-A5, XCLK.

TABLE 8: AC PARAMETERS – Packaged parts

CHARACTERISTIC	SYMBOLS	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS
Sampling Frequency	Fs					
ISD1110				6.4	kHz	[5]
ISD1112				5.3	kHz	[5]
Filter Pass Band	F _{CF}					
ISD1110			2.6		kHz	3 dB Roll-Off Point [3][6]
ISD1112			2.2		kHz	3 dB Roll-Off Point [3][6]
Record Duration	T _{REC}					
ISD1110		10			sec	
ISD1112		12			sec	
Playback Duration	T _{PLAY}					
ISD1110		10			sec	[5]
ISD1112		12			sec	[5]
RECLED ON Delay	T _{LED1}		5		μsec	
RECLED OFF Delay	T _{LED2}					
ISD1110		40	48.5	100	msec	
ISD1112		50	58.3	105	msec	
A0-A7 Setup Time	T _{SET}	300			nsec	
A0-A7 Hold Time	T _{HOLD}	0			nsec	
Record Power-Up Delay	T _{RPUD}					
ISD1110			32		msec	
ISD1112			39		msec	
Record Power-Down Delay	T _{RPDD}					
ISD1110			32		msec	
ISD1112			39		msec	
Play Power-Up Delay	T _{PPUD}					
ISD1110			32		msec	
ISD1112			39		msec	
Play Power-Down Delay	T_{PPDD}					
ISD1110			8.1		msec	
ISD1112			9.7		msec	

TABLE 8 (cont'd)

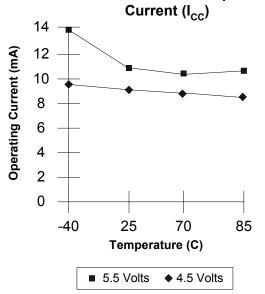
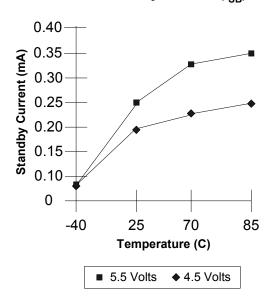
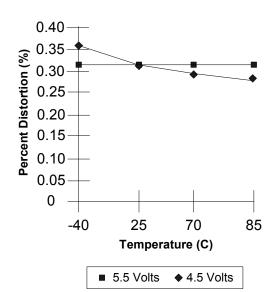
CHARACTERISTIC	SYMBOL	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS
EOM Pulse Width	T _{EOM}					
ISD1110			15.625		msec	
ISD1112			18.75		msec	
Total Harmonic Distortion	THD		1		%	@ 1 kHz
Speaker Output Power	P _{OUT}		12.2		mW	R _{EXT} = 16 Ω
Voltage Across Speaker Pins	V _{OUT}		1.25	2.5	mVp-p	R _{EXT} = 600 Ω
MIC Input Voltage	V _{IN1}			20	mV	Peak-to-Peak [4]
ANA IN Input Voltage	V _{IN2}			50	mV	Peak-to-Peak

Notes:

- [1] Typical values @ $T_A = 25^\circ$ and $V_{CC} = 5.0V$.
- [2] All Min/Max limits are guaranteed by Winbond via electrical testing or characterization. Not all specifications are 100 percent tested.
- [3] Low-frequency cutoff depends upon the value of external capacitors (see Pin Descriptions)
- [4] With 5.1 K Ω series resistor at ANA IN.
- [5] Sampling Frequency and playback Duration can vary as much as ±2.25 percent over the commercial temperature and voltage ranges. All devices will meet the maximum sampling frequency and minimum playback duration parameters. For greater stability, an external clock can be utilized (see Pin Descriptions)
- [6] Filter specification applies to the antialiasing filter and the smoothing filter. Typical Parameter Variation with Voltage and Temperature. This parameter is not checked during production testing and may vary due to process variations and other factors. Therefore, the customer should not rely upon this value for testing purposes.

10.1.1. Typical Parameter Variation with Voltage and Temperature

Chart 1: Record Mode Operating

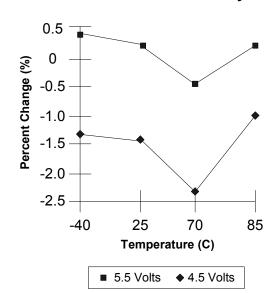

Chart 3: Standby Current (I_{SB})

Chart 2: Total Harmonic Distortion

Chart 4: Oscillator Stability

10.2. PARAMETERS FOR DIE

TABLE 9: DC PARAMETERS

PARAMETERS	SYMBOLS	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS
Input Low Voltage	V _{IL}			0.8	V	
Input High Voltage	V _{IH}	2.4			>	
Output Low Voltage	V _{OL}			0.4	V	I _{OL} = 4.0 mA
Output High Voltage	V _{OH}	2.4			>	I _{OH} = -1.6 μA
V _{CC} Current (Operating)	I _{CC}		15	30	mA	$V_{CC} = 5.5V^{[3]},$ $R_{EXT} = \infty$
V _{CC} Current (Standby)	I _{SB}		0.5	2	μΑ	[3][4]
Input Leakage Current	I _{IL}			±1	μΑ	
Input Current HIGH w/ Pull Up	I _{ILPU}			-130	μΑ	Force V _{CC} ^[5]
Input Current HIGH w/ Pull Down	I _{ILPD}			130	μΑ	Force V _{CC} [6]
Output Load Impedance	R _{EXT}	16			Ω	Speaker Load
Preamp Input Resistance	R _{MIC}		10		ΚΩ	Pads 17,18
ANA IN Input Resistance	R _{ANA IN}		3		ΚΩ	
Preamp Gain 1	A _{PRE1}		24		dB	AGC = 0.0V
Preamp Gain 2	A _{PRE2}		-45	-15	dB	AGC = 2.5V
ANA IN to SP+/- Gain	A _{ARP}		22		dB	
AGC Output Resistance	R _{AGC}		5		ΚΩ	
Preamp Out Source	I _{PREH}		-2		mA	@ V _{OUT} = 1.0V
Preamp In Sink	I _{PREL}		0.5		mA	@ V _{OUT} = 2.0V

Notes:

- [1] Typical values @ T_A = 25° and V_{CC} = 5.0V.
- [2] All Min/Max limits are guaranteed by Winbond via electrical testing or characterization. Not all specifications are 100 percent tested.
- [3] V_{CCA} and V_{CCD} connected together.
- [4] REC, PLAYL, and PLAYE must be at V_{CCD} .
- [5] XCLK pin only.
- [6] A0-A5, XCLK.

TABLE 10: AC PARAMETERS

h	170	-	PARAME	TEINO		
CHARACTERISTIC	SYMBOL	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS
Sampling Frequency	F _S					
ISD1110				6.4	kHz	[5]
ISD1112				5.3	kHz	[5]
Filter Pass Band	F _{CF}					
ISD1110			2.6		kHz	3 dB Roll-Off Point [3][6]
ISD1112			2.2		kHz	3 dB Roll-Off Point [3][6]
Record Duration	T _{REC}					
ISD1110		10			sec	
ISD1112		12			sec	
Playback Duration	T _{PLAY}					
ISD1110		10			sec	[5]
ISD1112		12			sec	[5]
RECLED ON Delay	T _{LED1}		5		µsec	
RECLED OFF Delay	T _{LED2}					
ISD1110		40	48.5	100	msec	
ISD1112		50	58.3	105	msec	
Address Setup Time	T _{SET}	300			nsec	
Address Hold Time	T _{HOLD}	0			nsec	
Power-Up Delay	T _{RPUD}					
ISD1110			32		msec	
ISD1112			39		msec	
PD Pulse Width (Record)	T _{RPDD}					
ISD1110			32		msec	
ISD1112			39		msec	
Play Power-Up Delay	T _{PPUD}					
ISD1110			32		msec	
ISD1112			39		msec	
Play Power-Down Delay	T _{PPDD}					
ISD1110			8.1		msec	
ISD1112			9.7	_	msec	

TABLE 10 (cont'd)

CHARACTERISTIC	SYMBOL	MIN ^[2]	TYP ^[1]	MAX ^[2]	UNITS	CONDITIONS
EOM Pulse Width	T _{EOM}					
ISD1110			16.625		msec	
ISD1112			18.75		msec	
Total Harmonic Distortion	THD		1		%	@ 1 kHz
Speaker Output Power	P _{OUT}		12.2		mW	R _{EXT} = 16 Ω ^[4]
Voltage Across Speaker Pins	V _{OUT}		1.25	2.5	mVp-p	R _{EXT} = 600 Ω
MIC Input Voltage	V _{IN1}			20	mV	Peak-to-Peak [4]
ANA IN Input Voltage	V _{IN2}			50	mV	Peak-to-Peak

Notes:

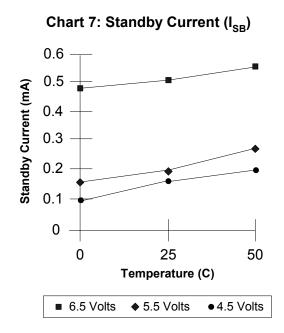
- [1] Typical values @ $T_A = 25^\circ$ and $V_{CC} = 5.0V$.
- [2] All Min/Max limits are guaranteed by Winbond via electrical testing or characterization. Not all specifications are 100 percent tested.
- [3] Low-frequency cutoff depends upon the value of external capacitors (see Pin Descriptions)
- [4] With 5.1 K Ω series resistor at ANA IN.
- [5] Sampling Frequency and playback Duration can vary as much as ±2.25 percent over the commercial temperature and voltage ranges. All devices will meet the maximum sampling frequency and minimum playback duration parameters. For greater stability, an external clock can be utilized (see Pin Descriptions)
- [6] Filter specification applies to the antialiasing filter and the smoothing filter. Typical Parameter Variation with Voltage and Temperature. This parameter is not checked during production testing and may vary due to process variations and other factors. Therefore, the customer should not rely upon this value for testing purposes.

10.2.1. Typical Parameter Variation with Voltage and Temperature

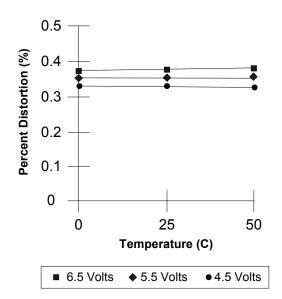
Chart 5: Record Mode Operating
Current (I_{cc})

15

10


0

0


25

Temperature (C)

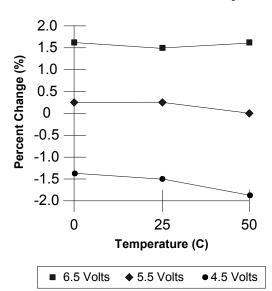

6.5 Volts \$5.5 Volts \$4.5 Volts

Chart 6: Total Harmonic Distortion

Chart 8: Oscillator Stability

11. TYPICAL APPLICATION CIRCUIT

FIGURE 5: APPLICATION EXAMPLE

Functional Description Example

The following operating sequence example demonstrates the functionality of the ISD1100 series.

1. Record a message:

Pulling the REC signal LOW initiates a record cycle from current location. When $\frac{\text{REC}}{\text{REC}}$ is held LOW, the recording continues. Until the memory array is filled up or when $\frac{\text{REC}}{\text{REC}}$ is pulled HIGH, recording ceases. An EOM marker is written at the end of message. Then the device will automatically power down.

2. Edge-activated playback:

Pulling the PLAYE signal LOW initiates a playback cycle from the beginning of the message until the entire message is played. The rising edge of PLAYE has no effect on operation. When the EOM marker is encountered, the device automatically powers down. A subsequent falling edge on PLAYE initiates a new playback operation from the beginning of the message.

3. Level-activated playback:

Holding the PLAYL signal LOW initiates a playback cycle from the beginning of the message, until PLAYL is pulled HIGH or when the EOM marker is encountered, playback operation stops and the device automatically powers down.

4. Record (interrupting playback).

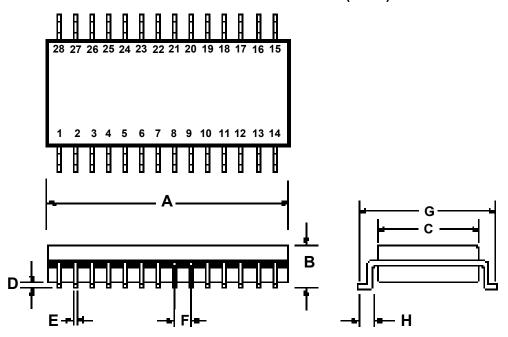
The REC signal takes precedence over playback operation. Holding REC LOW initiates a new record operation from current location, regardless of any current operation in progress.

5. RECLED operation.

During record, the RECLED output pin provides an active-LOW signal, which can be used to drive an LED as a "record-in-progress" indicator. It returns to a HIGH state when the REC pin is pulled HIGH or when the recording is completed due to the memory being filled. However, during playback, this pin also pulses LOW to indicate an EOM at the end of a message.

Applications Note

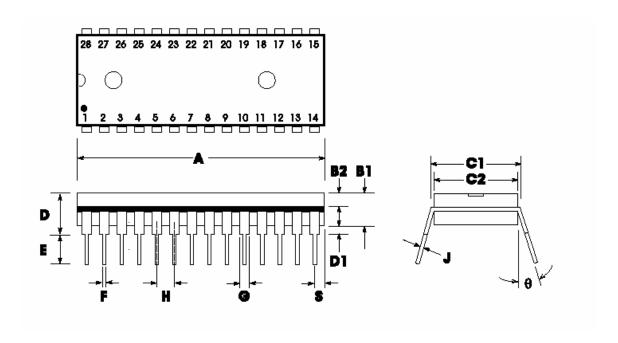
Some users may experience an unexpected recording taking place when their circuit is powered up, or the batteries are changed, and V_{CC} rises faster than \overline{REC} . This undesired recording prevents playback of the previously recorded message. A spurious EOM marker appears at the very beginning of the memory, preventing access to the original message, and nothing is played.


To prevent this occurrence, install a capacitor (approx. $0.001~\mu F$) between the REC and V_{CC} pins. This pulls the control pin voltage up with V_{CC} as it rises. Once the voltage is HIGH, the pull-up device will keep the pin HIGH until intentionally pulled LOW, preventing the false EOM marker.

Since this condition is dependent upon factors such as the capacitance of the user's printed circuit board, not all circuit designs will exhibit the spurious marker. It is recommended, however, that the capacitor is included for design reliability. A more detailed explanation and resolution of this occurrence is described in Application Information.

12. PACKAGE DRAWING AND DIMENSIONS

12.1. 28-LEAD 300MIL PLASTIC SMALL OUTLINE IC (SOIC)



	INCHES			MILLIMETERS		
	Min	Nom	Max	Min	Nom	Max
Α	0.701	0.706	0.711	17.81	17.93	18.06
В	0.097	0.101	0.104	2.46	2.56	2.64
С	0.292	0.296	0.299	7.42	7.52	7.59
D	0.005	0.009	0.0115	0.127	0.22	0.29
Е	0.014	0.016	0.019	0.35	0.41	0.48
F		0.050			1.27	
G	0.400	0.406	0.410	10.16	10.31	10.41
Н	0.024	0.032	0.040	0.61	0.81	1.02

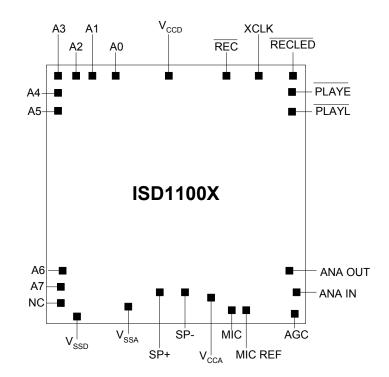
Note: Lead coplanarity to be within 0.004 inch.

12.2. 28-LEAD 600MIL PLASTIC DUAL INLINE PACKAGE (PDIP)

		INCHES		N	MILLIMETER:	S
	Min	Nom	Max	Min	Nom	Max
Α	1.445	1.450	1.455	36.70	36.83	36.96
B1		0.150			3.81	
B2	0.065	0.070	0.075	1.65	1.78	1.91
C1	0.600		0.625	15.24		15.88
C2	0.530	0.540	0.550	13.46	13.72	13.97
D			0.19			4.83
D1	0.015			0.38		
Е	0.125		0.135	3.18		3.43
F	0.015	0.018	0.022	0.38	0.46	0.56
G	0.055	0.060	0.065	1.40	1.52	1.62
Н		0.100			2.54	
J	0.008	0.010	0.012	0.20	0.25	0.30
S	0.070	0.075	0.080	1.78	1.91	2.03
q	0°		15°	0°		15°

Note: Lead coplanarity to be within 0.005 inch.

12.3. DIE PHYSICAL LAYOUT [1]


ISD1100X

o Die Dimensions

X: 172.2 ± 1 mils Y: 138.2 ± 1 mils

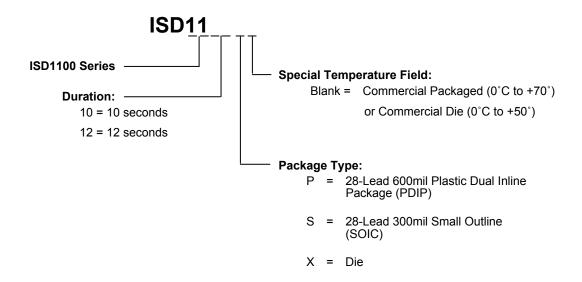
o Die Thickness ^[2] $17.5 \pm .1$ mils

Pad Opening88 x 112 microns3.46 x 4.41 mils

Notes:

- The backside of die is internally connected to V_{SS}. It MUST NOT be connected to any other potential or damage may occur.
- [2] Die thickness is subject to change, please contact Winbond factory for status.

ISD1100 SERIES PAD DESIGNATIONS


(with respect to die center)

PAD	PAD Name	X Axis (μm)	Υ Axis (μm)
A0	Address 0	-1364.0	1589.6
A1	Address 1	-1648.4	1589.6
A2	Address 2	-1816.4	1589.6
A3	Address 3	-2013.6	1515.6
A4	Address 4	-2013.6	1337.6
A5	Address 5	-2013.6	1129.6
A6	Address 6	-2013.6	-831.2
A7	Address 7	-2013.6	-1022.0
NC	No Connect	-2013.6	-1361.6
V _{SSD}	Digital Ground	-1893.6	-1588.0
V _{SSA}	Analog Ground	-357.6	-1588.0
SP+	Speaker Output +	-17.2	-1512.8
SP-	Speaker Output -	412.4	-1512.8
V _{CCA}	Analog Power Supply	780.0	-1552.4
MIC	Microphone Input	992.0	-1590.0
MIC REF	Microphone Reference	1169.2	-1590.0
AGC	Automatic Gain Control 1978.4		-1590.0
ANA IN	Analog Input	2005.6	-1196.4
ANA OUT	Analog Output	1991.2	-995.2
PLAYL	Level-Activated Playback	2014.4	1224.4
PLAYE	Edge-Activated Playback	2014.4	1392.8
RECLED	Record LED Output	2012.4	1587.6
XCLK	External Clock	1581.5	1589.6
REC	Record	752.8	1589.6
V _{CCD}	Digital Power Supply	-48.0	1545.2

13. ORDERING INFORMATION

Product Number Descriptor Key

When ordering ISD1100 series devices, please refer to the following valid part numbers.

Die / Package	10-Se	econd	12-Se	cond
	Product P/N	Ordering P/N	Product P/N	Ordering P/N
Die	ISD1110X	I1110X	ISD1112X	I1112X
PDIP	ISD1110P	I1110P	ISD1112P	I1112P
SOIC	ISD1110S	I1110S	ISD1112S	I1112S

For the latest product information, access Winbond's worldwide website at http://www.winbond-usa.com

14. VERSION HISTORY

VERSION	DATE	DESCRIPTION
0	Before 2004	Initial issue
1.0	March 2004	Reformat the document. Add footnote to Filter Passband in Tables 1, 8 & 10. Revise Functional Description Example section. Revise die info. Revise ordering information.
1.1	Apr 2005	Revise the disclaim section.

Winbond products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Furthermore, Winbond products are not intended for applications wherein failure of Winbond products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur.

Winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Winbond for any damages resulting from such improper use or sales.

The contents of this document are provided only as a guide for the applications of Winbond products. Winbond makes no representation or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to discontinue or make changes to specifications and product descriptions at any time without notice. No license, whether express or implied, to any intellectual property or other right of Winbond or others is granted by this publication. Except as set forth in Winbond's Standard Terms and Conditions of Sale, Winbond assumes no liability whatsoever and disclaims any express or implied warranty of merchantability, fitness for a particular purpose or infringement of any Intellectual property.

The contents of this document are provided "AS IS", and Winbond assumes no liability whatsoever and disclaims any express or implied warranty of merchantability, fitness for a particular purpose or infringement of any Intellectual property. In no event, shall Winbond be liable for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information) arising out of the use of or inability to use the contents of this documents, even if Winbond has been advised of the possibility of such damages.

Application examples and alternative uses of any integrated circuit contained in this publication are for illustration only and Winbond makes no representation or warranty that such applications shall be suitable for the use specified.

The 100-year retention and 100K record cycle projections are based upon accelerated reliability tests, as published in the Winbond Reliability Report, and are neither warranted nor guaranteed by Winbond. This product incorporates SuperFlash®.

Information contained in this ISD® ChipCorder® datasheet supersedes all data for the ISD ChipCorder products published by ISD® prior to August, 1998.

This datasheet and any future addendum to this datasheet is(are) the complete and controlling ISD® ChipCorder® product specifications. In the event any inconsistencies exist between the information in this and other product documentation, or in the event that other product documentation contains information in addition to the information in this, the information contained herein supersedes and governs such other information in its entirety. This datasheet is subject to change without notice.

Copyright[©] 2005, Winbond Electronics Corporation. All rights reserved. ChipCorder[®] and ISD[®] are trademarks of Winbond Electronics Corporation. SuperFlash[®] is the trademark of Silicon Storage Technology, Inc. All other trademarks are properties of their respective owners.

Headquarters

No. 4, Creation Rd. III Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5665577 http://www.winbond.com.tw/

Taipei Office

9F, No. 480, Pueiguang Rd. Neihu District Taipei, 114 Taiwan TEL: 886-2-81777168 FAX: 886-2-87153579

Winbond Electronics Corporation America

2727 North First Street, San Jose, CA 95134, U.S.A. TEL: 1-408-9436666 FAX: 1-408-5441797 http://www.winbond-usa.com/

Winbond Electronics Corporation Japan

7F Daini-ueno BLDG. 3-7-18 Shinyokohama Kohokuku, Yokohama, 222-0033 TEL: 81-45-4781881 FAX: 81-45-4781800

Winbond Electronics (Shanghai) Ltd.

27F, 299 Yan An W. Rd. Shanghai, 200336 China TEL: 86-21-62365999 FAX: 86-21-62356998

Winbond Electronics (H.K.) Ltd.

Unit 9-15, 22F, Millennium City, No. 378 Kwun Tong Rd., Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064

О компании

ООО "ТрейдЭлектроникс" - это оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов. Реализуемая нашей компанией продукция насчитывает более полумиллиона наименований.

Благодаря этому наша компания предлагает к поставке практически не ограниченный ассортимент компонентов как оптовыми, мелкооптовыми партиями, так и в розницу.

Наличие собственной эффективной системы логистики обеспечивает надежную поставку продукции по конкурентным ценам в точно указанные сроки.

Срок поставки со стоков в Европе и Америке – от 3 до 14 дней.

Срок поставки из Азии - от 10 дней.

Благодаря развитой сети поставщиков, помогаем в поиске и приобретении экзотичных или снятых с производства компонентов.

Предоставляем спец цены на элементы для создания инженерных сэмплов.

Упорный труд, качественный результат дают нам право быть уверенными в себе и надежными для наших клиентов.

Наша компания это:

- Гарантия качества поставляемой продукции
- Широкий ассортимент
- Минимальные сроки поставок
- Техническая поддержка
- Подбор комплектации
- Индивидуальный подход
- Гибкое ценообразование

Наша организация особенно сильна в поставках модулей, микросхем, пассивных компонентов, ксайленсах (XC), EPF, EPM и силовой электроники.

Большой выбор предлагаемой продукции, различные виды оплаты и доставки, позволят Вам сэкономить время и получить максимум выгоды от сотрудничества с нами!

<u>Перечень производителей, продукцию которых мы поставляем</u> на российский рынок

RENESAS

5//

SIEMENS

гарантия бесперебойности производства и качества выпускаемой продукции

С удовольствием будем прорабатывать для Вас поставки всех необходимых компонентов по текущим запросам для скорейшего выявления групп элементов, по которым сотрудничество именно с нашей компанией будет для Вас максимально выгодным!

С уважением,
Менеджер отдела продаж ООО
«Трейд Электроникс»
Шишлаков Евгений
8 (495)668-30-28 доб 169
manager28@tradeelectronics.ru

http://www.tradeelectronics.ru/